Возможные следы рукотворности — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Возможные следы рукотворности

2022-11-24 35
Возможные следы рукотворности 0.00 из 5.00 0 оценок
Заказать работу

 

Засим оставим вирусологов в покое и обратим наш взор опять на сам вирус. Есть ли в нём какие-то явные признаки рукотворности? Для начала пару слов о том, что значит «явные». Понятно, что в природе могут произойти любые мутации совершенно случайно. Даже если бы врезка, создавшая фуриновый сайт в CoV2 была не “PRRA”, а “MADEINWVHANPRRA”, то всё равно оставался бы ненулевой шанс, что она могла возникнуть случайно. Но для нас, да и для любого суда, думаю, этого было бы достаточно, чтобы доказать рукотворное происхождение beyond a reasonable doubt.

Главная проблема с такими доказательствами состоит в том, что даже в рукотворном вирусе их попросту может не быть. Грубо говоря, хороший генный инженер может создать синтетический вирус «идентичный натуральному». Более того, часто исследователи намеренно привносят в свои конструкции какие-нибудь синонимичные мутации для того, чтобы потом можно было различить их штамм и природный. Но если создатель вируса эти маркеры рукотворности сам не раскрывает, отличить их от природных мутаций невозможно.

Но иногда следы могут и оставаться, особенно если создатели не пытаются скрыть рукотворность своей конструкции. В первую очередь, речь о местах разрезов ДНК (напомню, что манипуляции с РНК-вирусами проводятся именно в комплементарных им ДНК-конструкциях), необходимых создателям для сшивания разных сегментов генома или для вырезания старых и вставки новых участков. Ведь ДНК можно разрезать не в произвольных местах (Криспер не в счёт), а только там, где последовательность нуклеотидов (обычно 4–6 «букв») совпадает с той последовательностью, которую распознаёт та или иная рестриктаза, то есть фермент, расщепляющий цепочки нуклеотидов. При этом такой анализ осложняет то, что существуют сотни различных типов рестриктаз, используемых в генной инженерии. Но давайте попробуем провести такой анализ для CoV2.

Для начала — пример работы группы Барика от 2008 года, где они взяли Bat-SCoV и заменили RBD в его шиповидном белке на RBD из человеческого SARS-а. Вот как они описывают создание своей химеры:

Схематическое представление вариантов SARS-CoV и Bat-SCoV.

(A) Схематическое представление геномов SARS-CoV и Bat-SCoV (инвентарный номер GenBank FJ211859) и системы обратной генетики. (Вверху) стрелки указывают сайты процессинга вирусной протеазы nsp внутри полипротеина ORF1ab (открытые стрелки, папаин-подобная протеаза; закрашенные стрелки, nsp5 [3C-подобная протеаза]). Сразу ниже приведены фрагменты, использованные в системе обратной генетики, обозначенные от A до F. Фрагменты, синтезированные для создания Bat-SCoV, точно воспроизводят соединения фрагментов SARS-CoV, за исключением того, что Bat-SCoV имеет 2 фрагмента, Bat-E1 и Bat-E2, которые соответствуют фрагменту SARS-E.

Исходный текст

Schematic representation of SARS-CoV and Bat-SCoV variants.

(A) Schematic representation of SARS-CoV and Bat-SCoV (GenBank accession no. FJ211859) genomes and reverse genetics system. (Top) Arrowheads indicate nsp processing sites within the ORF1ab polyprotein (open arrowheads, papain-like proteinase mediated; filled arrowheads, nsp5 [3C-like proteinase] mediated). Immediately below are the fragments used in the reverse genetics system, labeled A through F. The fragments synthesized to generate Bat-SCoV exactly recapitulate the fragment junctions of SARS-CoV with the exception that the Bat-SCoV has 2 fragments, Bat-E1 and Bat-E2, which correspond to the SARS-E fragment.

Как видим, сначала группа Барика создала синтетический клон летучемышиного Bat-SCoV, причём «по лекалам» уже созданного ими ранее синтетического клона SARS-CoV. То есть для летучемышиного клона они использовали те же 6 сегментов с теми же сайтами рестриктаз, которые ранее они использовали для SARS-CoV, что позволило им менять местами сегменты вируса между разными штаммами как куски Лего. Вот подробное описание создания химерного мутанта:

Вирусы, содержащие ПЦР-генерированные вставки в вирусный геном, были получены с использованием стратегии сборки SARS-CoV (24, 33, 53) со следующими модификациями. Вкратце, для вируса Bat-F кДНК полной длины конструировали путем лигирования продуктов рестрикции из фрагментов A-E SARS-CoV и фрагмента F Bat-SCoV, что требовало расщепления Bgl-NotI. Для Bat-SCoV и Bat-SRBD, Bat-SRBM и Bat-Hinge плазмиды, содержащие 7 фрагментов кДНК генома Bat-SCoV, были расщеплены с использованием BglI для Bat-A, Bat-B, Bat-C и Bat -D, BglI и AflII для Bat-E1 и Bat-E2 и BglI и NotI для Bat-F. Расщепленные, очищенные фрагменты одновременно лигировали вместе. Транскрипция осуществлялась с использованием набора m7Message mMachine (Ambion), затем РНК электропорировали в клетки Vero (24, 53).

Исходный текст

Viruses containing PCR-generated insertions within the viral coding sequence were produced by using the SARS-CoV assembly strategy (24, 33, 53) with the following modifications. Briefly, for Bat-F virus, full-length cDNA was constructed by ligating restriction products from SARS-CoV fragments A–E and Bat-SCoV fragment F, which required a BglI-NotI digestion. For Bat-SCoV and Bat-SRBD, Bat-SRBM, and Bat-Hinge, plasmids containing the 7 cDNA fragments of the Bat-SCoV genome were digested by using BglI for Bat-A, Bat-B, Bat-C, and Bat-D, BglI and AflII for Bat-E1 and Bat-E2, and BglI and NotI for Bat-F. Digested, gel-purified fragments were simultaneously ligated together. Transcription was driven by using a T7 mMessage mMachine kit (Ambion), and RNA was electroporated into Vero cells (24, 53).

Все эти трёхбуквенные аббревиатуры (BglI, AflII,NotI и т.д.) в выделенном выше предложении и являются различными типами рестриктаз. Давайте посмотрим, будут ли заметны какие-то различия в сайтах рестриктаз в геноме (шиповидного белка) химеры в сравнении с геномом исходного SARS-CoV:

 

Как видно, сайты рестриктаз у химеры практически идентичны тем кускам исходных последовательностей в Bat-SCoV или SARS, откуда они были взяты. Единственные различия заметны в местах сшивания вставленного куска из SARS. Вот, например левый (5’-) край вставки:

 

Здесь у Bat-SCoV и SARS оказалась общая идентичная область нуклеотидов (пересечение бирюзовой и розовой областей), и в месте сшивки двух последовательностей никаких новых сайтов рестриктаз нет, а наоборот пропал сайт SspI из SARS-а. А вот правый (3’-) край вставки:

 

Тут в месте склеивания наоборот остались все старые рестриктазные сайты, и даже появились новые, например, EcoR II. Если бы я не знал, что химерный геном является следствием рукотворных манипуляций, смог бы я это понять, глядя на эти 3 сиквенса? Вряд ли, даже если бы у меня и закрались какие-то подозрения, то точно не beyond a reasonable doubt. Быть может, специалистам в генной инженерии это было бы видно по каким-то другим признакам, утверждать не берусь — здесь буду рад любому ликбезу.

Но в любом случае, давайте сравним шиповидный белок у RaTG13, CoV2 и панголина-19. Вдруг там что-нибудь на нас как выскочит, как выпрыгнет!

Вот так выглядит RBD (выделен салатовым) и RBM (жёлтым) у всех троих:

 

Что тут интересного? Любопытно было видеть сайт EcoR I на 5’-крае RBM у всех троих (первый стык между салатовой и жёлтой областями) — весьма удобно. Интересно, насколько это распространённая фича у других штаммов? Беглый анализ показал, что наша троица — рекордсмены по количеству таких сайтов в геноме, у других летучемышиных штаммов их всего по 5:

 

Возвращаясь к анализу RBD, из особенностей CoV2 можно отметить новые сайты рестриктаз, выделенные красными прямоугольниками — они совпадают с уникальными мутациями в аминокислотной последовательности (тоже отмечены красными прямоугольниками на аминокислотных сиквенсах в крайней правой колонке). На всякий случай я выделил ещё несколько новых сайтов: голубые прямоугольники и зелёный прямоугольник, который находится в районе единственной аминокислоты, различающейся между RBM CoV2 и панголина-19.

Давайте ещё сравним у всех троих штаммов место врезки PRRA, создавшей в CoV2 фуриновый сайт:

 

Тут тоже появилось несколько новых сайтов (выделены голубым) по обе стороны от новой вставки. Могли ли они быть использованы для создания фуринового сайта? Теоретически да. Но вставку можно было сделать и используя имеющиеся сайты, или даже создав сегменты с новыми сайтами, которые затем соединить «бесшовно», то есть не создавая новых сайтов на стыке. Если помните, Барик ещё в 2002 году применил эту технологию для создания синтетического клона мышиного коронавируса:

Места соединения сайтов рестрикции, которые расположены на концах каждой кДНК, систематически удаляются во время сборки полного полноразмерного продукта кДНК, что позволяет проводить повторную сборку без внесения изменений нуклеотидов.

Исходный текст

The interconnecting restriction site junctions that are located at the ends of each cDNA are systematically removed during the assembly of the complete full-length cDNA product, allowing reassembly without the introduction of nucleotide changes.

А в 2003 повторил на синтетическом клоне SARS-CoV:

Чтобы быстро собрать консенсусные клоны, мы использовали рестрикционные эндонуклеазы класса IIS, которые разрезают в асимметричных участках и оставляют асимметричные концы. Эти ферменты генерируют специфичные уникальные оверхенги, которые обеспечивают бесшовное лигирование двух кДНК с последующей потерей рестриктазного сайта.

Исходный текст

To rapidly assemble consensus clones, we used class IIS restriction endonucleases that cut at asymmetric sites and leave asymmetric ends. These enzymes generate strand-specific unique overhangs that allow the seamless ligation of two cDNAs with the concomitant loss of the restriction site.

Сегодня технология жонглирования генными последовательностями уже настолько автоматизирована и поставлена на поток, что в китайской статье от октября 2019 года про врезку нового фуринового сайта в куриный коронавирус её описанию отведено лишь пару предложений:

2.2. Создание рекомбинантного вируса

Рекомбинантный вирус rYN-S2/RRKR, содержащий шиповидный белок с фуриновым сайтом S2', был получен путем vaccinia рекомбинации, как описано ранее [20, 28]. Вкратце, плазмиду с фуриновым сайтом S ‘генерировали с использованием набора для бесшовной сборки Seamless Assembly kit (Invitrogen, Carlsbad, CA, USA) и трансфицировали в клетки CV-1, инфицированные вирусом vaccinia, содержащим геном YN-?S-GPT. Сайт Furin-S2 был введен в кДНК YN путем гомологичной рекомбинации с использованием системы временной доминантной селекции [25].

Исходный текст

2.2. Generation of Recombinant Virus

Recombinant rYN-S2/RRKR virus containing an S protein with the furin-S2? site was generated by vaccinia recombination, as described previously [20,28]. Briefly, plasmid with the furin-S2? site was generated using the Seamless Assembly kit (Invitrogen, Carlsbad, CA, USA) and transfected into CV-1 cells infected by vaccinia virus containing the genome of YN-?S-GPT. Furin-S2’ site was introduced into the YN cDNA by homologous recombination using the transient dominant selection system [25].

Невозможно не восхищаться тем, до чего дошел прогресс! Вот описание вышеупомянутого набора для бесшовной сборки Seamless Assembly kit:

Набор для бесшовного клонирования и сборки GeneArt позволяет одновременно и направленно клонировать от 1 до 4 фрагментов ПЦР, состоящих из любой последовательности, в любой линеаризованный вектор с помощью одной 30-минутной реакции при комнатной температуре. Набор содержит всё необходимое для сборки фрагментов ДНК и их трансформации в E.coli для отбора и роста рекомбинантных векторов.

• Скорость и простота — клонируйте до 4 фрагментов ДНК с выбранной последовательностью одновременно в одном векторе (до 13 Кб); не требуются сайты рестрикции, лигирования или рекомбинации

• Точность и эффективность — предназначен для клонирования того, что вы хотите, где вы хотите, в нужной ориентации и достижения до 90% правильных клонов без лишних последовательностей.

• Гибкость вектора — используйте наш линейный вектор или вектор по вашему выбору

• Бесплатные инструменты — Создавайте ДНК-олиго и многое другое с помощью нашего бесплатного веб-интерфейса, который шаг за шагом проведет вас через ваш проект

• Разнообразные приложения — Оптимизируйте многие методы синтетической биологии и молекулярной биологии с помощью быстрой комбинации, добавления, удаления или обмена сегментов ДНК.

Исходный текст

The GeneArt Seamless Cloning and Assembly Kit enables the simultaneous and directional cloning of 1 to 4 PCR fragments, consisting of any sequence, into any linearized vector, in a single 30-minute room temperature reaction. The kit contains everything required for the assembly of DNA fragments, and their transformation into E. coli for selection and growth of recombinant vectors.

• Speed and Ease?—?Clone up to 4 DNA fragments, with sequence of your choice, simultaneously in a single vector (up to 13 Kb); no restriction digestion, ligation or recombination sites required

• Precision and Efficiency — Designed to let you clone what you want, where you want, in the orientation you want, and achieve up to 90% correct clones with no extra sequences left behind

• Vector Flexibility — Use our linear vector or a vector of your choice

• Free Tools — Design DNA oligos and more with our free web-based interface that walks you step-by-step through your project

• Diverse Applications — Streamline many synthetic biology and molecular biology techniques through the rapid combination, addition, deletion, or exchange of DNA segments

До 4-х фрагментов ДНК можно склеить в нужной последовательности за каких-то полчаса, причём без головной боли с рестриктазами или лигацией. И загрузить своё творение в E. coli для размножения полученной конструкции.

Подводя черту под анализом рестриктазных сайтов, необходимо признать, что никаких однозначных выводов по его итогам сделать нельзя. Разве что в очередной раз можно было убедиться, что не только CoV2 уникален, но и сам RaTG13 очень необычный товарищ, и что стоит дальше изучать его биографию.

Кодоновые предпочтения

 

В этих целях я ещё решил взглянуть на, чтобы посмотреть на какие штаммы других вирусов похожи CoV2 и RaTG13. Не секрет, что вирусы склонны подстраиваться по своей кодоновой сигнатуре под предпочтения их хозяев, поэтому я ожидал увидеть у RaTG13 схожий паттерн с другими лечучемышиными вирусами, а также надеялся увидеть отличие от панголиньих штаммов.

Вот SARS-CoV, например, очень похож на Rs3367 и RsSCH014, как и можно было ожидать:

 

Между собой, кстати, SARS, MERS и CoV2 различаются:

 

RaTG13 похож на CoV2, что тоже вполне ожидаемо:

 

А вот на панголиньи штаммы RaTG13 действительно не супер похож, да и между собой панголиньи штаммы не то чтобы идентичны:

 

На ZXC21 и ZC45 тоже не сильно похож:

 

Из юньнаньских штаммов RaTG13 от Rs3367 и RsSCH014 довольно далёк, а ближе всего к LYRa11, но тоже с заметными различиями:

 

В общем, как всегда, RaTG13 и CoV2 стоят как-то обособленно. Ещё меня заинтриговал AAA кодон — он у них используется намного чаще, чем у соплеменников:

 

Вероятно, это просто очередное совпадение, но схожая пропорция между AAA и AAG наблюдается у E. coli. Может ли меняться кодоновая сигнатура у cDNA по мере её длительной культивации в клеточной культуре? В теории, да, но я пока глубоко эту тему не копал.

Что ж, кодоновый анализ тоже не выявил каких-то явных признаков рукотворности, но в очередной раз подтвердил уникальность CoV2 и RaTG13. Что у нас есть в сухом отстатке? Пока что лишь некий набор странных совпадений, который, как любят выражаться учёные, taken together, то есть, в совокупности, заставляет очень сильно задуматься. И уж точно не позволяет отвергнуть гипотезу о рукотворной природе CoV2.


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.033 с.