Особенности различных способов сварки плавлением среднелегированных сталей — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Особенности различных способов сварки плавлением среднелегированных сталей

2021-06-02 47
Особенности различных способов сварки плавлением среднелегированных сталей 0.00 из 5.00 0 оценок
Заказать работу

Дуговая сварка покрытыми электродами. Ручная дуговая сварка остается широко применяемым способом выполнения соединений большинства конструкций из среднелегированных сталей. К основным особенностям этого способа следует отнести использование низководородистых электродов с фтористо-кальциевым покрытием, применение постоянного тока обратной полярности, выполнение швов большого сечения каскадным и блочным методами. Используя перечисленные технологические приемы, стремятся максимально увеличить разогрев области шва, особенно при сварке сталей большой толщины. Существенно способствует предупреждению трещин повышение температуры разогрева более 150 0С. Для достижения такого разогрева используют, в частности, каскадный метод сварки при сравнительно небольшой длине его ступени (менее 200 мм).

Режимы дуговой сварки среднелегированных сталей покрытыми электродами подбирают в зависимости от типа стержня. При ферритном стержне они не отличаются от режимов, применяемых при сварке низкоуглеродистых сталей, при аустенитном - от режимов сварки аустенитных сталей.

Сварка под флюсом. При изготовлении конструкций из среднелегированных сталей из всех механизированных процессов сварка под флюсом нашла наиболее широкое применение. С ее помощью в настоящее время изготовляют конструкции разнообразного назначения, преимущественно из металла толщиной 4 - 50 мм. В отдельных случаях под флюсом сваривают и более тонкий, и более толстый металл.

По сравнению с ручной дуговой сваркой, а также другими методами механизированной сварки сварка под флюсом обеспечивает более высокую производительность. Особенно значительны ее преимущества при однопроходной сварке. В этом случае можно наиболее полно использовать особенности сварки под флюсом для глубокого проплавления основного металла, применения больших токов, а также избежания затруднений с удалением шлаковой корки. Если соединения обладают достаточно высокой стойкостью против образования трещин и подвергаются последующей термообработке, однопроходную сварку под флюсом можно производить на режимах, применяемых при сварке низкоуглеродистых и низколегированных сталей.

При сварке сталей и соединений с пониженной стойкостью против образования трещин (повышенное содержание углерода и легирующих примесей, большая толщина листов или большая жесткость их закрепления) приходится применять дополнительные меры: использование постоянного тока обратной полярности, предварительный подогрев или разогрев области шва при наложении многослойного шва, сварку первого слоя по присадочной проволоке и при увеличенном угле разделки кромок.

Для сварки под флюсом среднелегированных сталей применяют высококремнистые марганцевые флюсы АН-348-А и ОСЦ-45, низкокремнистые флюсы АН-15, АН-15М, АН-17М, АН-42, АН-20 и др. Под высококремнистыми марганцевыми флюсами сваривают соединения, к которым не предъявляются высокие требования по ударной вязкости металла шва. Обычно при использовании флюсов этого типа ударная вязкость металла шва на сталях типа ЗОХГСНА не превышает 0,3 –0,4 МДж/м2 даже в соединениях, подвергающихся термообработке после сварки. К преимуществам сварки под такими флюсами следует отнести повышенную стойкость швов против образования кристаллизационных трещин.

Низкокремнистые флюсы с небольшим содержанием окислов марганца позволяют получать сварные соединения со значительно более высокими показателями ударной вязкости. Так, например, в сварных соединениях стали ЗОХГСНА, выполненных с применением флюса АН-15М и проволоки Св-20Х4ГМА, ударная вязкость металла шва повышается до 0,6 – 0,8 МДж/м2 при s в = 1300 МПа. Отмеченное улучшение качества обусловлено уменьшением содержания в металле шва фосфора и неметаллических включений, достигаемым за счет низкого содержания во флюсах фосфора и окислов марганца.

К недостаткам флюсов АН-15, АН-15М и АН-20 следует отнести необходимость выполнения сварки на постоянном токе обратной полярности. При сварке на переменном токе в швах могут возникнуть поры. Флюс АН-42, хотя несколько уступает упомянутым флюсам в отношении ударной вязкости металла шва, однако позволяет производить сварку на переменном токе.

Сварка в защитных газах. Сварка в защитных газах находит широкое применение при изготовлении конструкций из среднелегированных сталей. К технологическим особенностям сварки среднелегированных сталей в защитных газах следует отнести тщательную осушку газа с целью предельного снижения содержания водорода в металле шва, а также использование режимов сварки, обеспечивающих пониженные скорости остывания сварных соединений. Эти меры необходимы для повышения стойкости сварных соединений против образования холодных трещин. В качестве защитных газов при сварке среднелегированных сталей применяют преимущественно углекислый газ и аргон. Для сварки пригодны режимы, рекомендованные для соединений из низколегированных сталей со снижением силы тока на 15 - 20%. В основном используют проволоки Св-10ГСМТ, Св-10ХГСН2МТ и Св-08ХЗГ2СМ.

Сварку в аргоне производят неплавящимся и в меньшей мере плавящимся электродом, в основном при изготовлении ответственных конструкций из среднелегированных высокопрочных сталей (s в > 1500 МПа). Для получения сварных соединений, полностью равноценных по конструктивной прочности основному металлу, рекомендуется применять автоматическую аргонодуговую сварку с поперечными перемещениями неплавящегося электрода. Как правило, предусматривают выполнение сварного соединения в два слоя. При первом слое, выполняемом без поперечных перемещений электрода, обеспечивается полное проплавление свариваемых кромок. При сварке второго слоя электроду придают низкочастотные поперечные колебания (3 - 6 колебаний в секунду). Сварку осуществляют по присадочной проволоке, которая с помощью специального устройства подается в зону дуги. При этом достигается хорошее формирование шва.

Поперечные перемещения дуги оказывают многостороннее положительное влияние на качество сварных соединений, улучшается формирование шва и обеспечивается плавный переход от шва к основному металлу. Существенно ослабляются столбчатая ориентация структуры металла шва и перегрев в околошовной зоне. Это достигается вследствие пульсирующего изменения температуры металла околошовной зоны вблизи линии сплавления. Время пребывания околошовной зоны при температурах, превышающих 1000 0С, многократно уменьшается, и перегрев соответственно ослабевает. Непрерывное изменение фронта кристаллизации перемещающейся сварочной ванны способствует изменению направления роста столбчатых кристаллитов, их дроблению и измельчению.

Положительное влияние поперечных перемещений дуги проявляется только при определенных режимах сварки. При большом токе, высоком напряжении дуги, малой амплитуде и большой частоте поперечных перемещений электрода сварочная ванна не следует за дугой и описанные выше положительные результаты не достигаются.

Присадочная проволока применяется диаметром 0,8 - 1,6 мм. С ее помощью удается хорошо сформировать усиление шва, а также регулировать химический состав металла шва и его пластические и прочностные свойства.

В швах, выполненных при оптимальном режиме перемещений электрода, наряду с повышенной пластичностью существенно повышается также и прочность, что обусловлено увеличением поступления углерода в шов из основного металла. При малой амплитуде (2 мм) и большой частоте поперечных перемещений электрода (8 кол/с) никакого улучшения свойств металла шва не наблюдается. При оптимальной амплитуде (3,5 мм), но малой частоте перемещений (1 кол/с) формирование швов неудовлетворительное.

Перемещения дуги положительно влияют на качество сварных соединений не только при сварке среднелегированных сталей, но и во всех других случаях, когда с применением аргонодуговой сварки необходимо получить высокие показатели механических свойств и хорошее формирование шва.

В ИЭС им. Е. О. Патона разработан способ увеличения глубины проплавления основного металла при аргонодуговой сварке неплавящимся электродом. Метод предусматривает нанесение на свариваемые кромки тонкого слоя специального активирующего флюса-пасты (доли грамма на погонный метр). Флюс-пасту приготовляют смешиванием химически чистых компонентов на жидком парафине. Из замеса формируют цилиндрические стержни-карандаши, при помощи которых флюс наносят на свариваемые кромки посредством прочерчивания узкой полоски. Содержащиеся во флюсе фториды и окислы, попадая в дугу, способствуют существенному повышению концентрации сварочного нагрева вследствие уменьшения диаметра столба дуги, увеличения температуры плазмы и плотности тока в прианодной области.

Аргонодуговую сварку неплавящимся электродом всегда выполняют на прямой полярности, поэтому анод расположен на основном металле. В результате существенно увеличивается глубина и уменьшается ширина проплавления основного металла. Открываются дополнительные возможности уменьшения перегрева околошовной зоны и улучшения структуры металла шва вследствие ускорения его кристаллизации и благодаря микролегированию через флюс-пасту металла шва титаном, цирконием, церием и др. Особо высокое качество сварных соединений можно получить при двухслойной или трехслойной аргонодуговой сварке вольфрамовым электродом с применением флюсов-паст в первом слое и поперечных перемещений электрода во втором и третьем.

Следует особо отметить принципиальное значение флюсов-паст для аргонодуговой сварки неплавящимся электродом рафинированных сталей. Как показали опыты, глубина проплавления рафинированных сталей значительно меньше (примерно в 1,2 раза), а ширина швов более чем в 2 раза больше по сравнению с этими показателями сталей обычной выплавки. Повышение силы сварочного тока без изменения глубины проплавления увеличивает лишь ее ширину. Кроме того, увеличивается перегрев металла в околошовной зоне.

Причиной уменьшения глубины проплавления рафинированных сталей при аргонодуговой сварке является низкое содержание в них кислорода и серы. В результате усиливается влияние легкоионизируемых паров анода, дуга расширяется, температура плазмы и плотность тока в прианодной области снижаются, что ослабляет концентрацию дугового нагрева. Эти неблагоприятные для проплавления основного металла изменения в дуговом разряде полностью устраняются с помощью флюсов-паст. Больше того, эти флюсы позволяют получить на рафинированных сталях более концентрированный дуговой нагрев, чем при сварке сталей обычной выплавки.

Описанный способ аргонодуговой сварки с применением флюсов-паст открыл возможность широкого использования рафинированных сталей для изготовления тонколистовых сварных конструкций.

Такие стали отличаются весьма низким содержанием серы (0,002%) и кислорода (0,001%). Столь глубокое рафинирование достигается путем применения электрошлакового, электронно-лучевого и других видов переплава, а также при дополнительном рафинировании стали в ковше синтетическими шлаками. Рафинированные стали идут на изготовление особо ответственных конструкций и, прежде всего, тяжелонагруженных сварных конструкций из среднелегированных высокопрочных сталей. Рафинирование позволяет повысить надежность конструкций при самых тяжелых условиях эксплуатации и улучшает некоторые показатели свариваемости: сопротивление образованию трещин, пор, хрупких разрушений. Ухудшаются только показатели проплавления рафинированных сталей при аргонодуговой сварке неплавящимся электродом.

Сварка в защитных газах с успехом применяется также для соединения металла средней и большой толщины. Отсутствие толстой шлаковой корки на поверхности шва позволяет выполнять многопроходную сварку при каскадном расположении слоев, сокращать до минимума перерывы между наложением отдельных слоев, а также осуществлять многодуговую сварку при большом расстоянии между дугами. В ряде случаев эта особенность сварки в защитных газах позволяет отказаться от предварительного подогрева.

Электрошлаковая сварка. Сварные соединения толстолистовых конструкций из среднелегированных сталей, подвергающиеся последующей термообработке, наиболее целесообразно выполнять электрошлаковой сваркой. Наряду с высокой производительностью и экономичностью сварочных работ при этом обеспечивается и высокое качество сварных соединений, главным образом благодаря высокой стойкости металла околошовной зоны и шва против образования трещин. Однако при неблагоприятных условиях при электрошлаковой сварке могут возникать кристаллизационные трещины в металле шва, а также горячие и холодные трещины типа отколов в участке перегрева околошовной зоны.

Трещины-отколы возникают преимущественно в начале шва особенно после возобновления прерванного процесса сварки, а также при большой жесткости соединяемых элементов. Эти трещины, как правило, образуются через несколько часов по окончании сварки. Их образование можно предотвратить, если соединения сразу же после сварки подвергнуть высокому отпуску. Способствует предупреждению трещин и некоторое замедление процесса сварки, достигаемое путем уменьшения силы сварочного тока и увеличения ширины шва.

Для предупреждения образования отколов при сварке жестко-закрепленных элементов применяют предварительный подогрев начального участка или всего шва. Предварительный подогрев до температуры 150 - 200 °С необходим для предупреждения образования отколов и горячих трещин при сварке замыкающего участка круговых швов толстостенных сосудов толщиной более 100 мм.

Характер образования горячих трещин в околошовной зоне среднелегированных сталей не отличается от характера образования подобных дефектов при сварке сталей других типов. Наиболее действенной технологической мерой предупреждения подобных дефектов является применение режимов сварки, обеспечивающих получение широких швов с глубоким проплавлением свариваемых кромок. Такие режимы характеризуются повышенным напряжением сварки. Ограничения перегрева в околошовной зоне и предупреждения образования грубо-кристаллической структуры в металле шва можно достигнуть также следующими приемами: 1) уменьшением зазора между кромками, использованием сварочных проволок малых диаметров (1,6 - 2 мм) и больших вылетов электрода; 2) осуществлением выделения основной части энергии в зоне сварки непосредственно у ползунов и ускорением в результате этого охлаждения соединения. В отдельных случаях такое ускорение охлаждения достигается путем опрыскивания соединения водой при помощи специального устройства; 3) прерывистой подачей энергии в зону сварки при помощи специальных прерывателей. При этом обеспечивается минимальное, но достаточное проплавление свариваемых кромок, а ширина участка перегрева уменьшается.

Особое внимание уделяется металлургическому направлению исследований проблемы отказа от высокотемпературной термообработки соединений, выполненных электрошлаковой сваркой. Сущность этого направления состоит в изыскании рационального легирования сталей и сварочных проволок, а также выборе составов сварочных флюсов, позволяющих получать достаточно высокие механические свойства околошовной зоны и металла шва без применения высокотемпературной термообработки. Проведенные в ИЭС им. Е. О. Патона исследования применительно к стали 12ХМ показали перспективность рафинирования и микролегирования основного металла церием, алюминием и титаном, а также повышенного легирования хромом и дополнительного легирования марганцем и никелем. Механические свойства металла шва можно повысить, дополнительно легируя его небольшими количествами циркония и применяя флюс АН-22 взамен флюса АН-8. При этом повышение механических свойств достигается в основном за счет улучшения первичной и вторичной структуры металла шва, а также вследствие уменьшения количества и улучшения состава и распределения неметаллических включений.

Для упрочнения и удешевления изготовления сварных конструкций при помощи электрошлаковой сварки используют местную термообработку. Газопламенные или индукционные нагреватели располагают с одной стороны при термообработке соединений толщиной до 80 мм и с двух сторон - толщиной до 160 мм. По механическим свойствам соединений местная термообработка не уступает печной.

Благодаря применению рассмотренных методов непрерывно расширяется номенклатура ответственных сварных конструкций, изготовляемых электрошлаковой сваркой без высокотемпературной обработки вообще или же при замене печной обработки местной термообработкой соединений.

Электронно-лучевая сварка. Этот вид сварки целесообразен во всех случаях, когда необходимо с высокой производительностью и при ограниченной термообработке получить сварные соединения, равнопрочные (равноценные) с основным металлом - высококачественной металлургически и термически улучшенной среднелегированной сталью. Соединения, сваренные электронным лучом, отличаются высокой стойкостью против образования холодных трещин, а также минимальной величиной сварочных деформаций. Отмеченные преимущества способа обусловлены высокой концентрацией и большой скоростью нагрева, кинжальной формой проплавления основного металла, большими скоростями кристаллизации и охлаждения сварочной ванны и сварного соединения в целом. Погонная энергия однопроходной электроннолучевой сварки в несколько раз меньше, чем при других видах сварки плавлением. Так, в случае стыкового соединения металла толщиной 30 мм она составляет примерно 12,5 кДж/см при электронно-лучевой и 125 кДж/см при дуговой сварке под флюсом. Благодаря большим скоростям нагрева и охлаждения в электронно-лучевых соединениях формируется весьма мелкозернистая структура металла шва и предельно ограничиваются перегрев и разупрочнение околошовной зоны. Ширина столбчатых кристаллитов и ликвационных прослоек по их границам при электронно-лучевой сварке значительно меньше, чем при дуговой однопроходной сварке стали такой же толщины.

При электронно-лучевой сварке термоупрочненных сталей сварные соединения практически равноценны основному металлу, тогда как при аргоно-дуговой сварке эти соединения имеют значительное разупрочнение. При других способах сварки плавлением таких показателей достичь также не удается. Указанная разница в свойствах еще более резко проявляется при испытании соединений в условиях двухосного растяжения и при оценке конструктивной прочности соединений. В связи с этим весьма показательны результаты испытаний сварных соединений стали ЗОХГСНА, выполненных электронно-лучевой и другими способами сварки, на повторно-статический изгиб. Эти испытания показали, что качество соединений, выполненных электронно-лучевой сваркой, значительно превосходит таковое при других способах сварки и практически равноценно основному металлу.

К трудностям электронно-лучевой сварки среднелегированных сталей средних и больших толщин относится чувствительность к повышенному содержанию в основном металле углерода, легирующих элементов и газов, в частности кислорода. Так, например, при сварке сталей толщиной более 30 мм с содержанием более 0,2 % С в швах возникают кристаллизационные трещины. Если содержание кислорода в стали превышает 0,02 %, электронно-лучевая сварка становится практически невозможной из-за повышенного разбрызгивания жидкого металла и образования пор в шве. В то же время при сварке сталей толщиной до 25 мм при соответствующем выборе режима сварки обеспечивается качественное соединение без пор и трещин даже при содержании 0,3 % С (например, сварка трубчатых узлов из стали ЗОХГСНА).

При больших толщинах основного металла особо существенное значение приобретает точность ведения луча по стыку, так как вследствие кинжальной формы проплавления незначительное смещение луча от линии сварки или небольшой его перекос приводит к образованию непроваров.

 



Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.03 с.