Механические свойства среднелегированных сталей и металла шва — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Механические свойства среднелегированных сталей и металла шва

2021-06-02 39
Механические свойства среднелегированных сталей и металла шва 0.00 из 5.00 0 оценок
Заказать работу

Марка стали Способ сварки Участок соединения sв, МПа sт, МПа d, % y, % Ан, МДж/м2
28Х3СНМВФА Аргонодуговая с поперечным колебанием электрода Шов Основной металл 1870 1700 1580 1520 11,5 8,3 56,8 47,4 0,59 0,48
42Х2ГСНМА Электронно-лучевая Шов Основной металл 1840 1830   1440 15.6 9,6 54,5 26 0,52 0,43
20 Х2МА Электронно-лучевая Шов Основной металл 660 643 575 485 28,9 24,5 72 62,8 2,25 1,87

 

Однако иметь одинаковый химический состав металла шва и основного металла далеко не всегда возможно вследствие опасности возникновения в швах кристаллизационных трещин. Особенно большие отступления от этого условия приходится допускать при дуговой сварке среднелегированных сталей средних и больших толщин с повышенным содержанием углерода, никеля и кремния. Понижая содержание в шве этих элементов, с целью предупреждения чрезмерного ухудшения его механических свойств, прибегают к дополнительному легированию элементами, повышающими стойкость против образования кристаллизационных трещин (марганцем, хромом, титаном). Примером такого решения может быть использование для сварки стали ЗОХГСНА сварочной проволоки Св-20Х4ГМА.

Подобный метод повышения стойкости металла шва против образования кристаллизационных трещин следует применять совместно с использованием режимов сварки, обеспечивающих высокое значение коэффициента формы шва, избегать узкой и глубокой разделки кромок под сварку и в отдельных случаях применять также предварительный подогрев. Комплексное использование методов борьбы с кристаллизационными трещинами позволяет получить соединения со швами, в меньшей степени отличающимися от основного металла по химическому составу.

При выборе состава проволоки для сварки среднелегированных сталей нужно учитывать, что часть легирующих элементов и углерода поступает в шов из основного металла в соответствии с его долей участия в образовании шва. Эта доля определяется методом и режимом сварки и может изменяться от 15 до 80%.

В сварных соединениях, подвергающихся полной термообработке, можно меньше считаться с влиянием первичной структуры на свойства металла шва, чем в соединениях, не подвергающихся термообработке. Грубозернистая структура участка перегрева околошовной зоны при термообработке практически полностью устраняется. Все это позволяет применять для сварки термообрабатываемых конструкций высокопроизводительные режимы и методы сварки, при использовании которых в сварных соединениях непосредственно после сварки может образоваться грубо-кристаллическая структура. К таким методам относится электрошлаковая сварка, а также сварка под флюсом при большой погонной энергии.

Термообработка сварных соединений обычно производится по режимам, установленным для свариваемой стали. Во всех случаях, когда металл шва отличается по химическому составу от основного металла, необходимо проверять соответствие этих режимов конкретным сварным соединениям. В отдельных случаях может оказаться необходимой некоторая их корректировка. В частности, если металл шва содержит меньше углерода и легирующих элементов, чем основной металл, для обеспечения полной перекристаллизации его приходится повышать температуру нагрева под закалку. Повышение температуры также благоприятно и для более полного устранения дендритной неоднородности в металле шва и перегрева околошовной зоны. Контроль пригодности того или иного режима термообработки ведут с учетом механических свойств и микроструктуры металла сварного соединения.

При необходимости следует также проверять коррозионную стойкость сварных соединений, их прочность и сопротивляемость ползучести при высоких температурах, а также другие специальные свойства (электрические, магнитные и т. п.). Следует учитывать, что сравнительно небольшое отличие химического состава металла шва от основного металла в отдельных случаях может привести к заметному снижению некоторых специальных свойств.

Сварные соединения, не подвергающиеся термообработке после сварки. Большие скорости кристаллизации и остывания металла шва позволяют при соответствующем легировании и подборе режима сварки обеспечить его равнопрочность с основным металлом для среднелегированных сталей с временным сопротивлением до 1000 МПа. При этом пластичность и вязкость металла шва остаются достаточно высокими. Столь высокие свойства достигаются при условии улучшения не только первичной, но и вторичной структуры металла шва и предупреждения перегрева и разупрочнения в процессе сварки металла околошовной зоны.

Вторичную структуру металла шва можно измельчить в процессе сварки и получить при этом оптимальные механические свойства при условии применения таких термических циклов сварки, при которых распад переохлажденного аустенита произойдет преимущественно в нижней части температурного интервала ферритно-перлитного превращения. В этой области образуется мелкозернистая ферритная матрица, в которую вкраплены весьма мелкодисперсные продукты перлитно-бейнитного превращения. При этом важно предупредить образование крупных участков избыточного феррита, снижающих прочность и особенно ударную вязкость металла шва при низких температурах.

Для достижения этого необходимо увеличить в определенных пределах скорость охлаждения шва и повысить содержание в нем углерода и стабилизирующих аустенит легирующих элементов. Эти пределы определяются так, чтобы не допустить смещения превращения аустенита в шве в мартенситную область. Швы с большим количеством мартенсита в сварных конструкциях недопустимы из-за низких пластичности и вязкости. Кроме того, весьма трудно предупредить образование холодных трещин в таких швах.

Примером термически необработанных швов на среднелегированных сталях типа ЗОХГСА с оптимальной вторичной структурой и достаточно высокими показателями прочности, пластичности и вязкости могут быть швы, полученные при дуговой сварке под флюсом и в среде защитных газов на умеренных режимах с применением сварочных проволок Св-10ГСМТ, Св-08Х3Г2СМ, Св-10ХГСН2МТ. При многослойной сварке таких сталей с использованием проволоки Св-10ХГСН2МТ и флюса АН-15 на режиме I св = 500 А, U д = 32 В, V св = 40 м/ч обеспечивается получение металла шва с высокими механическими свойствами.

Для повышения производительности при многослойной сварке соединений, не подвергающихся последующей термообработке, следует рекомендовать многодуговую сварку раздвинутыми дугами. При этом наряду с повышением производительности и сохранением всех преимуществ многослойной сварки в отношении качества металла шва достигается высокая стойкость сварных соединений против отколов.

При сварке особо ответственных конструкций, не подвергающихся последующей термообработке, в тех случаях, когда равнопрочность не является обязательным условием, используют сварочную проволоку с высоким содержанием легирующих элементов, обеспечивающих получение металла шва с аустенитной структурой и с временным сопротивлением до 550 МПа. Обладая гранецентрированной решеткой, металл шва с аустенитной структурой отличается высокой пластичностью и вязкостью даже при грубой литой структуре. Он не теряет этих свойств ни при низких температурах, ни при ударном приложении нагрузки. Сварные соединения с аустенитными швами применяют в самых ответственных и тяжелонагруженных конструкциях. Весьма ценным их свойством является высокая стойкость против образования трещин в околошовной зоне.

Для сварки среднелегированных сталей используют сварочную проволоку аустенитного класса Св-07Х25Н13 или Св-08Х20Н9Г7Т. Повышают долю электродного металла в металле шва путем применения постоянного тока прямой полярности, трехфазной сварки и других приемов. При этих условиях можно со сравнительно высокой производительностью сваривать соединения аустенитным швом, не опасаясь разбавления аустенитного металла шва основным металлом и снижения его стойкости против образования кристаллизационных трещин, что имеет место при применении проволоки с более высоким содержанием легирующих элементов.

К недостаткам сварки среднелегированных сталей аустенитной сварочной проволокой кроме пониженной прочности металла шва следует отнести высокую стоимость проволоки и возможность возникновения отрывов по зоне сплавления.

Сварные соединения, подвергающиеся после сварки только высокому отпуску. В случаях, если нельзя применить закалку конструкции или соединения после сварки, например, из-за опасности деформаций, но необходимо несколько повысить механические свойства металла шва и околошовной зоны и снять остаточные сварочные напряжения, прибегают к высокому или низкому отпуску сварных конструкций. Высокий отпуск (нагрев до температур 600 - 650 0С) более эффективен, чем низкий, так как обеспечивает полное снятие сварочных напряжений и устраняет закалку металла шва и околошовной зоны. При этом прочность металла несколько понижается, а пластичность и ударная вязкость существенно повышаются.

Отпуск не обеспечивает перекристаллизации металла и, следовательно, не может устранить ни столбчатой структуры, ни явлений перегрева в околошовной зоне. Поэтому необходимо применять те же технологические меры по измельчению первичной и вторичной структур металла шва и околошовной зоны, что и в случае сварки среднелегированных сталей без последующей термообработки.

Улучшение пластичности и вязкости металла шва в результате отпуска допускает его значительно большее легирование по сравнению со швами, не подвергающимися термообработке. В связи с этим в соединениях, подвергающихся отпуску, превращение переохлажденного аустенита в металле шва может происходить в области бейнитного и мартенситного превращения с образованием игольчатой структуры. При отпуске такой металл приобретает высокую пластичность и вязкость в сочетании с достаточно высокой прочностью. Если же подвергнуть отпуску соединения, не повышая легирования металла шва, то прочностные и вязкие свойства его могут заметно понизиться.


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.