Метод конечных элементов и его связь с основными методами строительной механики. Влияние ЭВМ на развитие методов расчета строительных конструкций. Оптимальное проектирование и его критерии. — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Метод конечных элементов и его связь с основными методами строительной механики. Влияние ЭВМ на развитие методов расчета строительных конструкций. Оптимальное проектирование и его критерии.

2019-08-07 5932
Метод конечных элементов и его связь с основными методами строительной механики. Влияние ЭВМ на развитие методов расчета строительных конструкций. Оптимальное проектирование и его критерии. 4.89 из 5.00 9 оценок
Заказать работу

Метод конечных элементов в строительстве впервые на практике был использован в начале 50-х годов двадцатого века. Изначально его развитие происходило в двух независимых друг от друга направлениях: инженерном и математическом. На раннем этапе становления формулировки метода отталкивались только от принципов строительной механики, и это существенно ограничивало область его применения. И лишь после формулировки основ МКЭ с возможностью небольших отклонений, стало возможным его использование и в решении других задач. Активному развитию метода конечных элементов способствовал и прогресс в области компьютерной техники, а также появляющаяся возможность его использования в большинстве областей науки и практики

Перед началом выполнения расчета конструкции следует представить ее в виде, понятном электронному мозгу, то есть компьютеру. И так как компьютер может оперировать только с цифрами, то и конструкция должна быть представлена именно в цифровом варианте. Таким образом, нужно создать математическую модель, которая будет не только полностью соответствовать рассчитываемой конструкции, но и состоять только из цифр. Целью работы будет решение этой математической модели и определение неизвестных.

Суть метода конечных элементов заключается в разбиении всей области, занимаемой конструкцией, на некоторое количество малых подобластей с конечным размером. Эти подобласти носят название конечных элементов, а само разбиение называется дискретизацией.

Форма конечных элементов будет зависеть от типа самой конструкции и характера деформации. Например, конечными элементами в расчете стержневых конструкций (ферм, балок или рам) будут участки стержней, при расчетах двумерных континуальных систем (пластин, плит или оболочек) — прямоугольные или треугольные подобласти, а при расчете трехмерных конструкций (массивов или толстых плит) — подобласти в виде тетраэдров или параллелепипедов. Но в отличие от настоящей конструкции в такой дискретной модели связывание конечных элементов происходит только в отдельных узлах (точках) некоторым известным количеством узловых параметров.

Функционалом энергии всей конструкции при дискретизации будет алгебраическая сумма отдельных функционалов конечных элементов, и для каждой подобласти должен быть задан независимый от других закон распределения требуемых для решения функций. С помощью этих законов возможно выражение перемещений (искомых непрерывных величин) в пределах заданного конечного элемента через значения величин в конечных точках.

Число узлов и число их возможных перемещений (степень свободы) для конечного элемента могут варьироваться, но меньше минимального количества, необходимого для рассмотрения состояний конечных элементов под действием напряжения или деформации в данной принятой модели, их быть не должно. Степени свободы конечных элементов определяются числом независимых перемещений во всех их узлах. Степень свободы всей рассчитываемой конструкции и, как следствие, алгебраический порядок уравнений системы будет определяться суммированием числа перемещений всех известных ее узлов. Исходя из того, что основные неизвестные в расчете методом перемещений — искомые узловые перемещения, то понятия степени свободы конечных элементов и конструкции целиком становятся особо важными в методе конечных элементов.

Способ дискретизации рассматриваемой области, количество конечных элементов, число их степеней свободы, а также форма используемых приближенных функций оказывают непосредственное влияние на точность расчета всей конструкции. Таким образом, метод конечных элементов, как наиболее алгебраический, помогает не только при расчете отдельных строительных конструкций, но и в целом при решении строительных задач.

Метод конечных элементов (МКЭ) - основной метод современной строительной механики, лежащий в основе подавляющего большинства современных программных комплексов, предназначенных для выполнения расчетов строительных конструкций на ЭВМ.

Но диапазон его применения чрезвычайно широк: строительство и машиностроение, гидро- и аэродинамика, горное дело и новейшая техника, а также различные задачи математической физики – теплопроводности, фильтрации, распространения волн и т. д.

Метод конечных элементов впервые был применен в инженерной практике в начале 50-х гг. XX в. Первоначально он развивался по двум независимым один от другого направлениям – инженерному и математическому. На раннем этапе формулировки МКЭ основывались на принципах строительной механики, что ограничивало сферу его применения. И только когда были сформулированы основы метода в вариационной форме, стало возможным распространение его на многие другие задачи. Быстрое развитие МКЭ шло параллельно с прогрессом современной компьютерной техники и ее применением в различных областях науки и инженерной практики.

Значительный вклад в разработку МКЭ был сделан Дж. Аргирисом. Им впервые дана общая матричная формулировка расчета стержневых систем на базе фундаментальных энергетических принципов, определена матрица податливости, а также введено понятие матрицы жесткости (как обратной матрице податливости). Работы Дж. Аргириса и его сотрудников, опубликованные в период 1954–1960 гг., дали отправную точку для матричной формулировки известных численных методов и применения ЭВМ в расчетах конструкций.

Для развития МКЭ особое значение имели вариационные принципы механики и математические методы, основанные на этих принципах. Дискретизацию задачи на основе вариационного метода Ритца впервые в 1943 г. применил Р. Курант. Лишь в 50-е гг. появились аналогичные работы Ж. Поли, Ж. Герша и др.

Первая работа, в которой была изложена современная концепция МКЭ, относится к 1956 г. Американские ученые М. Тэрнер, Р. Клафф, Г. Мартин и Л. Топп, решая плоскую задачу теории упругости, ввели элемент треугольного вида, для которого сформировали матрицу жесткости и вектор узловых сил. Название – метод конечных элементов ввел в 1960 г. Р. Клафф. В период 1960–1965 гг. опубликованы работы, в которых на основе вариационных принципов получены конечные элементы для решения задач изгиба плит, тонких оболочек, массивов. Среди них можно отметить работы Р. Мак-Лейа, Р. Мелоша, Дж. Бесселина, Ф. де Веубеке, М. Джонса, Т. Пиана. В 1967 г. издана первая монография о МКЭ О. Зенкевича и И. Чанга, в которой изложены основы метода и области его применения.

К семидесятым годам относится появление математической теории конечных элементов. Здесь можно выделить труды И. Бабушки, Р. Галлагера, Ж. Дек-лу, Дж. Одена, Г. Стренга, Дж. Фикса. Значительный вклад в разработку теоретических основ МКЭ внесли и российские ученые. В. Г. Корнеев указал на совпадение математической сущности МКЭ и ВРМ. Сопоставление МКЭ с рядом вариационных методов приведено в трудах Л. А. Розина. Под руководством А. С. Сахарова разработана моментная схема конечных элементов.

Период последних десятилетий особенно характерен для развития и применения МКЭ в таких областях механики сплошных сред, как оптимальное проектирование, учет нелинейного поведения, динамика конструкций и т. п.

Метод конечных элементов, как и многие другие численные методы, основан на представлении реальной континуальной конструкции ее дискретной моделью и замене дифференциальных уравнений, описывающих НДС сплошных тел, системой алгебраических уравнений. Вместе с тем МКЭ допускает ясную геометрическую, конструктивную и физическую интерпретацию.

Суть метода заключается в том, что область (одно-, двух- или трехмерная), занимаемая конструкцией, разбивается на некоторое число малых, но конечных по размерам подобластей (рис. 9.3). Последние носят название конечных элементов (КЭ), а сам процесс разбивки – дискретизацией.

 

В зависимости от типа конструкции и характера ее деформации КЭ могут иметь различную форму. Так, при расчете стержневых систем (фермы, балки, рамы) КЭ представляют собой участки стержней; для двумерных континуальных конструкций (пластины, плиты, оболочки) чаще всего применяют треугольные и прямоугольные (плоские или изогнутые) КЭ; а для трехмерных областей (толстые плиты, массивы) – КЭ в форме тетраэдра или параллелепипеда. В отличие от реального сооружения в дискретной модели конечные элементы связываются между собой только в отдельных точках (узлах) определенным конечным числом узловых параметров.

МКЭ – это вариационный метод. Функционал энергии для всей рассматриваемой области здесь представляется в виде суммы функционалов отдельных ее частей – конечных элементов. По области каждого элемента, независимо от других, задается свой закон распределения искомых функций. Такая кусочно-непрерывная аппроксимация выполняется с помощью специально подобранных аппроксимирующих функций, называемых также координатными или интерполирующими. С их помощью искомые непрерывные величины (перемещения, напряжения и т.д.) в пределах каждого КЭ выражаются через значения этих величин в узловых точках, а произвольная заданная нагрузка заменяется системой эквивалентных узловых сил.

При такой кусочно-непрерывной аппроксимации обеспечивается условие совместности лишь в узлах, а в остальных точках по границам КЭ это условие удовлетворяется в общем случае приближенно (в связи с этим различают КЭ разной степени совместности).

Наибольшее распространение получил метод конечных элементов в перемещениях, имеющий много общего с методом Ритца и вариационно-разностным методом (в дальнейшем мы будем в основном рассматривать именно этот вариант МКЭ). Различие между традиционной схемой метода Ритца и МКЭ в форме метода перемещений заключается в выборе системы аппроксимирующих функций. Если в методе Ритца аппроксимация перемещений производится по всей области их определения, то в МКЭ – по каждому конечному элементу в отдельности, что позволяет использовать аппроксимирующие функции более простого вида. В первом случае функционал полной потенциальной энергии варьируется по неопределенным коэффициентам , во втором – по перемещениям в узлах сетки, что приводит к системе алгебраических уравнений метода перемещений (основными неизвестными являются непосредственно узловые перемещения). При этом использование кусочно-непрерывной аппроксимации позволяет получить редко заполненную или ленточную структуру матрицы коэффициентов системы уравнений и таким образом дает возможность применения более эффективных методов ее решения.

Число узлов и число перемещений в узле (степень свободы узла), принятые для конечного элемента, могут быть различными, однако не должны быть меньше минимально необходимых для описания напряженно-деформированного состояния КЭ в рамках принятой физической модели. Число независимых перемещений во всех узлах элемента определяет степень свободы КЭ. Степень свободы всей конструкции и соответственно порядок системы разрешающих уравнений определяется суммарным числом перемещений всех ее узлов. Поскольку основными неизвестными МКЭ в форме метода перемещений считаются узловые перемещения, степень свободы КЭ и всей конструкции в целом является чрезвычайно важным понятием в МКЭ. Понятия о степени свободы узла, КЭ и конструкции и степени их же кинематической неопределимости идентичны.

Способ разбивки рассматриваемой области на конечные элементы, их число и число степеней свободы, а также вид аппроксимирующих функций в конечном итоге предопределяют точность расчета конструкции. Следует отметить, что простым увеличением числа конечных элементов не всегда удается достичь повышения точности расчетов. Вопросы устойчивости и сходимости решения, а также оценки точности полученных результатов являются основными при использовании МКЭ.

По сравнению с другими численными методами МКЭ в лучшей степени алгоритмизирован и более гибок при описании геометрии и граничных условий рассчитываемой области. Кроме того, к достоинствам метода следует отнести его физическую наглядность и универсальность.

Применительно к стержневым системам МКЭ в форме метода перемещений может рассматриваться как матричная форма классического метода перемещений, отличающаяся только более глубокой формализацией алгоритма и ориентацией его на использование ЭВМ.

Метод конечных элементов позволяет практически полностью автоматизировать расчет стержневых систем, хотя, как правило, требует выполнения значительно большего числа вычислительных операций по сравнению с классическими методами строительной механики. Однако, в современных условиях большой объем вычислений не является серьезной проблемой, и, в связи с этим, при внедрении ЭВМ в инженерную практику МКЭ получил широчайшее распространение. Поэтому, знание основ метода конечных элементов и современных программных средств, позволяющих на его основе решать разнообразные задачи, в наше время для инженера является абсолютно необходимым.

 

Творческий процесс проектирования условно можно разбить на три стадии: анализ, синтез, оценка полученного решения.

С развитием электронной вычислительной техники использование итерациональных процедур позволяет автоматизировать поиск рациональных решений и создает новые возможности в совершенствовании вариантного проектирования сравнением практически неограниченного числа вариантов.

Критерии:

расход материалов;

стоимость строительства;

расходы с учетом их отдаленных во времени эксплуатаций.

Оптимальное проектирование заключается в разработке проекта конструкций, удовлетворяющей требованиям нормальной эксплуатации и имеющей наилучшие показатели из возможных.

Основу метода оптимального проектирования представляют аналитические закономерности, связывающие расчетно-конструктивные параметры изделия и организационно-технологические процессы его изготовления и монтажа с соответствующими им экономическими показателями. Преимуществом данного метода является то, что создаются условия для управления параметрами проектируемой конструкции.

Оптимальной называется система, удовлетворяющая заданным противоречивым требованиям к конфигурации конструкции, её прочности, деформативности, устойчивости, технологичности и оптимизирующая при этом решение по заданным критериям (масса конструкции, трудоемкость, стоимость с учетом расходов в течение срока эксплуатации).

 

Предварительно напряженные железобетонные конструкции. Преимущества и недостатки. Способы создания предварительного обжатия железобетонных конструкций. Методы натяжения арматуры. Потери предварительных напряжений. Первые, вторые и полные потери. Особенности конструирования предварительно напряженных железобетонных конструкций

Идея предварительного напряжения заключается в создании в конструкции до ее загружения внешними нагрузками усилий, позволяющих регулировать напряжения, вызываемые внешними нагрузками.

Преимущества:

 1. Снижение расхода материалов(бетона 40%, стали — 80% при использовании высоких классов бетона и высокопрочной арматуры).2. Снижение собственного веса конструкций за счет применения высокопрочных бетонов и арматуры

 2. Повышение жесткости конструкции за счет повышения трещиностойкости, уменьшения прогибов.

3. Увеличение долговечности конструкции(в агрессивной среде и большой влажности.

4. Повышение жесткости(уменьшение прогиба за счет обратного выгиба).

5. Повышение выносливости конструкции при динамических нагрузках. 

 

Недостатки:

 

1. Усложненное проектирование и изготовление

2. При передаче усилий с арматуры на бетон возможно появление трещин в бетоне вдоль напрягаемой арматуры в виду радиального давления арматуры на бетон.

3. При чрезмерных усилиях обжатия возможно появление трещин в верхних растянутых при обжатии зонах, что приводит к более раннему образованию трещин от внешних нагрузок, увеличению прогибов, ширины раскрытия трещин.

 

В качестве напрягаемой арматуры - А600, А800, А1000, Вр1200-Вр1600, канаты арматурные К7 и К19. Бетон назначается в зависимости от класса и диаметра арматуры. Rb больше 15Мпа и больше 0,5В, где В - класс бетона.

Способы предварительного напряжения ЖБ:

-на бетон

 

Сначала производится бетонирование, при котором предусматриваются каналы или пазы для дальнейшего размещения арматуры. После набора бетона передаточной прочности арматура заводится в каналы и производится ее натяжение. Затем каналы заполняются мелкозернистым бетоном. В некоторых конструкциях не заполняется - резервуары, атомные реакторы, тв башни.

 

-на упоры

 

Арматура закрепляется в упорах и натягивается механическим, электромеханическим или электротермическим способом (300 С). Натяжение может производится с одной или нескольких сторон, затем производится бетонирование и после достижения бетоном передаточной прочности Rbp арматура плавно освобождается от упоров и усилия, ранее передаваемые на упоры, начинают обжимать бетон.

-использование бетона на напрягающем цементе

 

Такие бетоны при твердении вместо усадки в объеме увеличиваются. Технология аналогична ненапрягаемым жб конструкциям.

Потери предварительных напряжений в арматуре

Начальные предварительные напряжения в арматуре не остаются постоянными, с течением времени они уменьшаются. Различают первые потери предварительного напряжения в арматуре, происходящие при изготовлении элемента и обжатии бетона, и вторые потери, происходящие после обжатия бетона.

Первые потери

1. Потери от релаксации напряжений в арматуре при натяжении на упоры зависят от способа натяжения и вида арматуры: при механическом способе натяжения, МПа: высокопрочной арматурной проволоки и канатов, стержневой арматуры;

 при электротермическом и электротермомеханическом способах натяжения: высокопрочной арматурной проволоки и канатов, стержневой арматуры.

 2. Потери от температурного перепада, т. е. от разности температуры натянутой арматуры и устройств, воспринимающих усилие натяжения при пропаривании или прогреве бетона.

3. Потери от деформации анкеров, расположенных у натяжных устройств вследствие обжатия шайб, смятия высаженных головок, смещения стержней в зажимах или в захватах при механическом натяжении на упоры.

4. Потери от трения арматуры: а) о стенки каналов или поверхность конструкции при натяжении на бетон б) об огибающие приспособления при натяжении на упоры 

6. Потери от быстронатекающей ползучести бетона зависят от условий твердения, уровня напряжений и класса бетона; развиваются они при обжатии (и в первые 2—3 ч после обжатия). 

Вторые потери

7. Потери от релаксации напряжений в арматуре при натяжении на бетон высокопрочной арматурной проволоки и стержневой арматуры принимаются такими же, как и при натяжении на упоры.

8. Потери от усадки бетона и укорочения элемента зависят от вида бетона, способа натяжения арматуры, условий твердения. 

9. Потери от ползучести бетона (следствие соответствующего укорочения элемента) зависят от вида бетона, условий твердения, уровня напряжений

10. Потери от смятия бетона под витками спиральной или кольцевой арматуры (при диаметре труб, резервуаров до 3 м)

 11. Потери от деформаций обжатия стыков между блоками сборных конструкций. Для конструкций, эксплуатируемых при влажности воздуха окружающей среды ниже 40 %, потери от усадки и ползучести бетона увеличиваются на 25 %. Для конструкций, эксплуатируемых в районах с сухим жарким климатом, эти потери увеличиваются на 50 %.

При натяжении арматуры на упоры учитывают: первые потери — от релаксации напряжений в арматуре, температурного перепада, деформации анкеров, трения арматуры об огибающие приспособления, деформации стальных форм, деформации бетона от быстронатекающей ползучести; вторые потери — от усадки и ползучести.

При натяжении арматуры на бетон учитывают: первые потери — от деформации анкеров, трения арматуры о стенки каналов (или поверхности бетона конструкций); вторые потери — от релаксации напряжений в арматуре, усадки и ползучести бетона, смятия бетона под витками арматуры, деформации стыков между блоками. Суммарные потери при любом способе натяжения могут составлять около 30 % начального предварительного напряжения. В расчетах конструкций суммарные потери должны приниматься не менее 100 МПа.


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.052 с.