Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы А на число k. — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы А на число k.

2017-12-12 398
Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы А на число k. 0.00 из 5.00 0 оценок
Заказать работу

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы А на число k.

- Cв-ва.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры. Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C, которая определяется по правилу, например,

- размеры разл.

Сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B)+C=A+(B+C).


1. Умножение матриц

Матр А и В соглас-е, если число строк матр А равно числу столбцов матр В, и наоборот.

Оп-ция умн-я матриц определена только для соглас. матриц.

Кв матрицы одного и того же порядка и одной и той же размерности всегда согласованны.

Пусть задана матр А=aik i=1,m; k=1,n и матр В=bkj k=1,m; j=1,n. Тогда произв-ем А на В наз. матр С такая, что сik=ai1·b1k+ ai2·b2k +…+ ain·bnk, где i=1,m; k=1,n, т.е. эл-т i-той строки и k-того столбца матрицы произв-ия С равен ∑ произв-ий эл-ов i-той строки матр А на соответствующие эл-ты k-того столбца матр В.

Если выполняется равенство АВ=ВА, то матрицы А и В наз. перестановочными (коммутирующими)

Матр,получ. из данной заменой кажд ее строки столбц с тем же номером,наз. транспон-ой к данной.

Св-ва умножения:

1.А·(ВС)=(АВ)С

2. А(В+С)=АВ+ВС

3. (А+В)С=АС+ВС

4. α(АВ)=(αА)В

Св-ва транспонирования:

1.(А+В)ттт

2. (АВ)т=В·Ат

3. (Ат) т= А

Квадратная матрица А, которая не меняется при транспонировании, - симметричная.

Если матрица симметрична, то эл-ты, равноудаленные от главной диагонали, совпадают.

А= 2 5 -2

5 -7 3

-2 3 1

Опред-ль 1,2,3 порядков.

Квадратной матрице А порядка n можно сопоставить число det A, называемое ее определителем следующим образом:

1. n=1. A=(a1); det A=a1

2. n=2.

3. n=3.

Определителем второго порядка называется число равное разности произведений элементов главной и второй диагонали:

Определителем третьего порядка называется следующее выражение: Правило треугольников:

Пример: А= det A= 5×1×(-3)+(-2)×(-4)×6+3×0×1- 6×1×1-3×(-2)×(-3)-0×(-4)×5=-15+48-6-18=9

 

 

3. Определитель квадратной матрицы порядка n.

Определитель квадратной матрицы n-ного порядка равен алгебраической сумме парных произведений элементов i-той строки матрицы А на их алгебраические дополнения или j-го столбца на их алгебраические дополнения.

Теорема Лапласа. Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения


4. Свойства определителей.

Если к.-л. строка или столбец в матрице состоит из одних нолей, то det

Этой матрицы равен 0

2)При транспонировании матрицы её определитель не изменяется: (detА =detА')

При перестановке местами 2-х строк или столбцов матрицы её

Определитель меняет свой знак на противоположный

Доказательство – проверкой.

9) det верхней треуг. матрицы = произведению диагональных эл-тов.

10) det A*B=detA*detB

Выбираем в матрице произвольные k строк и k столбцов. Элементы, стоящие на пересечении этих строк и столбцов образуют квадратную матрицу порядка k. Определитель полученной матрицы называется минором k-го порядка матрицы А.

Наибольший из порядков миноров данной матрицы, отличный от нуля, называется рангом матрицы. (обозначается r(A))

нек. св-ва: 1) r(A)=0 => A=0

2)

3) ранг верхней треугольной м. = числу диагональных эл-тов гл. диагонали неравных нулю.

ранг трапециевидной матрицы= числу диагональных эл-тов главного базисного минора.

Теорема Кронекера-Капелли

Для того, чтобы СЛАУ, где AX=B, где матр A разм-ти m*n была совместной необх-мо и дост-но, чтобы ранг осн матр системы был равен рангу расшир матр системы.

r(A) = r(A/B)

Док-во:

Необходимость: пусть СЛАУ AX=B совместна.

Доказать, что ранги равны.

Сущ набор чисел (α1, α2…..αn), что будучи подставл в каждое из ур-й системы получим:

 
 


Матричный метод

Пусть дана система из 3-х уравнений с тремя неизвестными . Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A:. Поскольку A-1A = E и E∙X = X, то получаем решение матричного уравнения в виде X = A-1B.


Метод Крамера.

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными: Находим det

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём


10.Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

· перестановка строк или столбцов;

· умножение строки на число, отличное от нуля;

· прибавление к одной строке другие строки.

· Удаление нулевой строки

Приведение системы к ступенчатому виду или расширенную матрицу к виду трапециевидной называется прямой ход Гаусса. Обратный ход – неизвестные определяются последовательно, начиная с последнего неизвестного и кончая первым. Придавая неизвестным (называемым свободными) произвольные значения, получим треугольную систему из которой последовательно найдем все остальные неизвестные (называемые базисными).

11. Понятие об n-мерном векторе. Векторное пространство.

Вектор – направленный отрезок на плоскости или в пространстве, имеющий определённую длину, у которого одна из точек принята за начало, а другая за конец. Длиной вектора (нормой) или модулем называется число, равное длине отрезка, изображающего вектор [ïaï=Öx2+y2(+z2)]. Если начало и конец вектора совпадают, то такой вектор называется нулевым и обозначается `0. Для каждого `а, отличного от 0, существует противоположный -`а, который имеет модуль, равный ïаï, коллиниарен с ним, но направлен в другую сторону. Два вектора `а и`в называются коллинеарными, если они расположены на одной прямой или на параллельных прямых. Два вектора называются равными, если они: 1)имеют равные модули; 2)коллиниарны; 3)направлены в одну сторону.

n-мерный вектор- упорядоченный набор n чисел, где каждое из n чисел- соответствующие координаты вектора. x=(x1,x2,xi,xn) Множество векторов с действительными компонентами, в котором определены операции сложения векторов и умножения вектора на число, удовлетворяющее всем сво-вам суммы(коммутативное, ассоциативные), называется векторным пространством. Размерность векторного пространства равна количеству векторов в базисе этого пространства. Совокупность n-мерных векторов, рассматриваемая с определёнными в ней операциями сложения векторов и умножения вектора на число, называется n-мерным координатным пространством. Система n—мерных лин. независимых векторов называется базисом Rn (R2-плоскость,R3-пространство), если каждый вектор этого пространства R разлагается по векторам этой системы. Базисом называется совокупность всех лин. независимых векторов системы пространства. Теорема: если диагональная система является частью n-мерных векторов, то она же является базисом этой системы. Теорема: любой вектор системы векторов единственным образов разлагается по векторам её базиса.


12. Линейная зависимость векторов.

Векторы называются линейно зависимыми, если существует такая линейная комбинация при не равных нулю одновременно . Если же только при ai = 0 выполняется , то векторы называются линейно независимыми.

Общее уравнение плоскости.

Ax+By+Сz-Ax0-By0-Сz0=0

-Ax0-By0-Сz0=D, где D=Ax+By+Сz

Ax+By+Сz+D=0


16. Углом между двумя прямыми называется любой из двух углов, образованных прямыми при их пересечении.

θ=α2- α1

tgθ=tg(α21)= (tgα2 – tgα1)/(1+ tgα2*tgα1)= (k2-k1)/(1+k2*k1)

tgθ=(k2-k1)/(1+k2*k1) – формула для вычисления угла между двумя пересекающимися прямыми

1. пусть θ=0, тогда прямые параллельны, tgθ=0 след-но k1=k2 – условие параллельности прямых

2. θ=90о, то tg θ= ∞ или не существует

1+k1* k2=0

k1* k2= -1 – условие перпендикулярности прямых


17. Расстояние от точки до прямой

Пусть задана прямая Ах+Ву+С=0 и точка М000), не лежащая на прямой. Нужно найти расстояние от точки М0 до прямой. коллинеарна . (; )=А(х1 – х0)+В(у10). (; )= cos = . А(х1 – х0)+В(у10)= .

d= = ------- формула для вычисления расстояния от точки до прямой, С=Ах1 +Ву1.

ИЛИ Не из конспекта: d= .

 

 

18. Понятие о кривых 2-го порядка. Окружность, эллипс, гипербола, парабола.

Кривые 2го порядка описываются с помощью общего ур-я:

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где

а) Каноническое ур-е эллипса

- Каноническое ур-е эллипса

Если a=b, то x2+b2=a2 - ур-е окружности.

б) Ур-е гиперболы: x2/a2-y2/b2=1

в) ур-е параболы: y2=2px или y=ax2

г) ур-е сферы: x2+y2+z2=а2 (r2=(x-a)2+(y-b)2+(z-c)2)

д) ур-е эллипса: x2/a2-y2/b2+z2/c2=1


18. Окружность

Это частный случай эллипса. Формула: (х-х0)2+(у-у0)2=R2, где (х00)- координаты центра окружности.

Эллипс, его характеристики, геометрические свойства.

Э.—это геометрическое место точек плоскости, для которых сумма расстояний до двух заданных точек (фокусов) есть величина постоянная (и равна 2а).

. … b222

--каноническое уравнение, где a-большая полуось, b-меньшая полуось.

--- эксцентриситет эллипса. с22-b2. .

Прямые называются директрисами Э., параллельны Оу, лежат вне Э.

F1(-c;0), F2(c;0) координаты фокусов Э. =1 также каноническое уравнение Э. с центром в т.(х00).


18а. Гипербола, ее характеристики, геометрические свойства

Г.—это геометрическое место точек плоскости, для которых модуль разности расстояний от двух заданных точек (фокусов) есть величина постоянная (и равна 2а).

Пусть М(х;у) произвольная точка гиперболы, тогда согласно определнию:

= 2а... с222

--- каноническое уравнение Г.

Это точка M0(x0,y0,z0)

Это точка M(x,y,z)

вектор M0M=(x-x0;y-y0;z-z0)

Векторы M0M//S

(x-x0)/k=(y-y0)/e=(t-t0)/m это каноническое

Введем параметр t Є R и положим (x-x0)/k=(y-y0)/e=(z-z0)/m=t, t Є R

x=x0+kt

y=y0+et это все параметрич ур-я прямой в пр-ве

z=z0+mt

Ур-я вида

A1x+B1y+C1Z+D1=0 это общие ур-я

A2x+B2y+C2Z+D2=0 прямой в пространстве

Условие перпенд-ти

Если пр перп-на пл-ти,то ее направл в-р S кол-н норм в-ру пл-ти S//N A/k=B/e=C/m

Условие принадлежности прямой к плоскости:

Ax0+By0+Cz0+D=0 Ak+Be+Cm=0

21. Предел числовой последовательности (ЧП).

ЧП – это ф-ия натур аргумента xn=f(n),где n принадлежит N.

x1, x2,…xn,…-числ послед.(1), xn-общ член ЧП.

Число а наз пределом посл-ти, если для любого малого положит числа ξ > 0 сущ такой номер N, зависящий от ξ, что для всех номеров n>N выполняется неравенство |xn-а|< ξ.

Замечание. |xn-а|< ξ=> а- ξ<x1<а+ ξ, Xn- ξ<a<xn+ ξ – ξ окрестности т.а

Если число а-предел ЧП(1), то все члены посл-ти, начиная с некот номера N, попадают в ξ-окрестность т.а.Чем больше N,тем ниже а.

Если а-предел числ. послед-ти(1), то пишут: lim xn=a или xn→a, n→∞

Свойства числ. последовательности:

1.Если ЧП с общ членом xn имеет предел, то она наз сходящейся.Всякая сход посл-ть огран, т.е. сущ M>0, что все члены этой П по модулю не превосх это число. |xn |<М

2. Пусть заданы 3 П, xn, yn, zn-общие члены. Причем lim xn= lim zn=а и выполняется неравенство: xn ≤yn≤zn, то lim yn=а.

3. Пусть послед. xn, yn имеют конечные пределы lim xn=а lim yn=в -∞<а,в<+∞. Тогда:

a) lim(xn±yn)= limxn ± lim yn)-справ для люб кон числа П

b) lim(xn*yn)= limxn*limyn

c) lim(Cxn)=C limCxn=C*a.

d) lim = = , b≠0.

Посл αn наз бескон малой, если ее предел = 0, т.е. limαn=0

Послед. βn наз бесконечно большой, если ее предел = ∞.

Утверждение. Если послед. αn-беск. малая, то послед. - беск. большая и наоборот.В курсах матанализа док-ся, что П {Хn}= монот и огранич.По теореме: для того, чтобы монот сходилась, необхмо и достаточно, чтобы она была огранич. След-но, эта П имеет предел. Он обозначается буквой е: е=lim , причем е=2,718.

Замечат пределы.

1-й замечат предел, или тригонометрич предел.

Теорема:

Док-во:

;

Очевидно:

sinx<=x<=tgx

Т.к.

; ;

Следствия из теоремы:

1. 2.

Второй замечательный предел:

Е-число Эйлера,

Если

26. Непрерывность функции в точке. Точки разрыва и их классификация.

Пусть у=f(x) задана в некотором множестве х, тогда функция называется непрерывной в точке , если , x x

т. е. функция f(x) называется непрерывной в точке , если она определена в этой точке, односторонние пределы существуют, являются конечными цифрами между собой и равны значению функции в этой точке.

Если у=f(x) непрерИвна в каждой точке множества х, то она непрерИвна на этом множестве.

Т.е. f’(

F’(

Пусть задана ф-ция S=S(t), кот. опред-ет зависимость пути от времени,в механике S’(t)=V –мгнов.скорость в момент времени t.

Пусть задана ф-ция у=f(x), для которой сущ-ет производная у’=f’(x). Эластич-тью ф-ции у=f(x) относ-но переменной х назыв-ся предел:

Его обознач-т

Эластич-ть относ-но х есть приближен.процентн прирост ф-ции (повышение/пониж-е) при приращении независ переменной на 1%.


29. Производная показательной неявной функции.Производные высших порядков:

Производная показательной функции:

При для любого х

Производная неявной функции:

При вычислении производной неявной функции воспользуемся правилом дифференцирования сложной функции. Продифференцируем уравнение . Отсюда получим формулу для производной функции , заданной неявно: = . Таким же способом нетрудно получить формулы для частных производных функции нескольких переменных, заданной неявно, например, уравнением :

, .

Производные высших порядков:

Если f '(x) — производная функции f (x), то производная от нее по независимой переменной x, (f '(x))' = f ''(x), называется производной второго порядка. Аналогично определены производные 3-го, 4-го,, и т.д, n-го порядка: f''' (x) = (f'' (x))', f (4)(x) = (f''' (x))', f (n)(x) = (f (n -1)(x))'


30. Теорема Лагранжа. Правило Лопиталя.

Теорема Лагранжа: Пусть задана ф-я и пусть она: 1) опр-на и непрер на ; 2) имеет кон произв-ю на . Тогда найдётся такая т. с (a<c<b), что вып-ся рав-во

Док-во: Введём вспомогат функцию

Она удовл-т всем условиям теоремы Ролля. Действительно, F(x) опред-на и непрер на , ,

,т.е. сущ на . След-но, найдётся точка с (a<c<b), такая, что F’(c) = 0, т.е.

или

Тогда

Правило Лопиталя: Пусть ф-и f(x) и g(x) одновр явл либо бескон б-ми, либо беск-но малыми в т. . Тогда при выч-и пределов при x → для раскрытия неопред-тей вида или удобно применить пр. Лопиталя:

, Неопределенности вида 0 · ∞, ∞ – ∞, , , часто удается свести к неопределенностям вида или с помощью различных преобразований.

31. Достаточное усл-е возраст-я (убыв-я) ф-й.

Ф-я наз-ся возраст-ей на инт-ле , если для любых и из этого инт-ла, для которых , верно нерав-во . Ф-я наз-ся убыв-ей на инт-ле , если для любых x 1 и x 2 из этого инт-ла, для кот , верно нерав-во . Необх-ое усл-е возраст-я ф-ии:е сли ф-ия диффер-ма и возраста на инт-ле , то для всех х из этого инт-ла. Необх-ое усл-е убыв-я ф-ции. Если ф-ция дифф-ма и убыва на инт-ле , то для всех х из этого инт-ла. Достаточное усл-е возраст-я (убыв-я ф-и). Пусть ф-я диф-ма на инт-ле . Если во всех точках этого инт-ла , то ф-ия возраста на этом интле, а если , то ф-я убывает на этом инт-ле.


32. Экстремумы ф-й.

Точка x = x0 называется точкой максимума, а число — максимумом функции, если для всех точек из некоторой окрестности точки x0, не совпадающих с x0, выполняется неравенство .

Точка x = x0 называется точкой минимума, а число — минимумом функции, если для всех точек из некоторой окрестности точки x0, не совпадающих с точкой x0, выполняется неравенство .

Находится производная.

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы А на число k.

- Cв-ва.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры. Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C, которая определяется по правилу, например,

- размеры разл.

Сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B)+C=A+(B+C).


1. Умножение матриц


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.127 с.