Preparation of iron sulfate solution (II) — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Preparation of iron sulfate solution (II)

2023-02-03 27
Preparation of iron sulfate solution (II) 0.00 из 5.00 0 оценок
Заказать работу

Сopperas (FeSO4·7H2O) was used (TU14-156-35-2012, or GOST 6981-94). The content of iron (II) sulfate in the test sample was 51%.

Solution with the concentration of 10 g / dm3 was prepared according to the basic component –Fe (II).

Coagulant solution contained 5% of the basic substance in terms of a commercial product (TP) - FeSO4 • 7Н2О, or 1% in Fe (II).

To prepare 1 liter of working solution with a concentration of 10 g / dm3, the coagulant mass, 51.0 g, was calculated according to the basic component - Fe (II).

Preparation of ferric chloride (III) solution

PIX-111 ferric chloride meets the requirements of the European standard EN 888: 2004 “Reagents used to treat water intended for human consumption” and has a Russian sanitary and epidemiological resolution in accordance with SanPiN 2.1.4.1074-01.

A coagulant working solution with a concentration of 10 g / dm3 was prepared from a 40% solution of iron chloride with a dilution of 1:10.

Method for conducting trial coagulation of wastewater

Wastewater coagulation process is known to depend on the temperature and treated water chemical composition, coagulant dose, and pH value during coagulation.

To determine a coagulant dose, measuring cups were placed on magnetic stirrers and 100 cm3 of the test water was introduced into them, then a coagulant solution of a given volume was also introduced. The solutions were mixed for 3 minutes at a speed of 150-180 rpm and for 10 minutes at a speed of 40 rpm. The process of coagulation and sedimentation of impurities was monitored. The settling time ranged from 30 minutes to 60 minutes.

Flocculation was evaluated based on a 10-point scale: 0 – no cotton, 1 –

barely discernible cotton, 4 – small cotton, 6 – medium-sized cotton, 8 –good cotton, 10 – too swollen cotton (>1 cm).

Method for determining the optimal pH value of coagulation.

Measuring cups were placed on magnetic stirrers and 100 cm3 of the test water was introduced into them, then coagulant was introduced in the optimal dose determined at the first stage of testing.

Iron salts are known to exhibit coagulating activity in the pH range 6.0–9.0; therefore, trial coagulation of wastewater was performed at the optimal dose of coagulant and pH values ​​of 7.0, 8.0, and 9.0. Solutions of sodium hydroxide (1 mol / dm3) and hydrochloric acid (1 mol / dm3) were used to adjust pH of the studied water.

Method for studying wastewater treatment by coagulation in the presence of flocculants

A strongly basic anionic flocculant, strongly acidic cationic flocculant, and non-ionic flocculant of the Praestol brand were studied.

To determine the dose of flocculant, measuring cups were placed on magnetic stirrers and 100 cm3 of the test water was introduced into them. Then a coagulant solution was introduced, the dose of which corresponded to the optimal one determined by the procedure described in section 2.2.3. An alkaline reagent was added to adjust the solution pH to the optimum value. The solutions were mixed for 30 seconds at a speed of 150-180 rpm, and again for 90 seconds at a speed of 35 min-1. After three minutes of the water sample contact with the coagulant, a flocculant solution of a given volume was added, the sample was then stirred for 30 seconds at a rotation speed of 160 min-1 and again for 10 minutes at a speed of 40 rpm. Then the water sample was poured into 100 ml cylinders, and the process of coagulation and flocculation of impurities sedimentation was monitored. Sedimentation time ranged from 30 to 60 minutes.

Results

1. At the initial stage, optimal coagulant dose and optimal pH value of wastewater (Table 1) were determined, since coagulation process depends on pH of the studied water.

Theoretical dose of iron salt was calculated according to the equation:

HS- + Fe2+= FeS + H+

Mass ratio HS-:Fe2+ = 33: 56 - 1:1,7

Theoretical dose of the reagent at a concentration of sulfide ion 25.5 mg/dm3 is 43.3 mg/dm3 in terms of Fe (II), or in terms of copperas – 216 mg/dm3. Commercial product dose is 8.5 mg/mg HS-.

Table 1. The effect of pH on coagulation process

Shot, mg / dm3

рН

Oxidation haze, mark

General content HS-, S-2, H2S, mg / dm3

Treatment efficiency, %

In terms of Fe (II) In terms of FeSO4·7 Н2О
0 0 0 8.1 5 15.8 -
1 30 150 7.1 0 7.1 55.1
2 50 250 8.0 0 6.5 58.9
3 60 300 8.5 0 1.2 92.4

Subsequent studies were conducted at the optimal pH value of the medium.

2. Flocculants are used to increase the deposition rate of the resulting coagulant flakes. Studies of coagulation wastewater treatment were performed using Praestol brand flocculants (anionic, cationic and nonionic) to substantiate the selection of a coagulant and flocculant type and its dose for removal of suspended solids, lignosulfonates and sulfur-containing compounds from wastewater (Table 2).

Table 2. The study of coagulation treatment using flocculants

Type of flocculant

Shot

рН

Flocculation, mark

Quality indicators of treated wastewater

Coagulant, g / dm3 Flocculant, mg / dm3 Сolor,  оЦ Hydrogen, mg / dm3 E,%  

Sulfide ion wastewater treatment using iron sulfate solution

1 abs. abs. abs. 8.0 abs. >800 25.5 abs.
2 abs. 0.25 0 9.0 4 150 9.6 62
3 abs. 0.3 0 9.0 6 100 1.1 95.7

Wastewater treatment using coagulants and flocculants

Coagulant - iron sulfate

1 abs. abs. abs. 8.0 abs. >800 36.16 abs.
2 NI 1.53 1.0 9.0 4 80 9.56 74
3 C 1.53 1.5 9.0 4 150 2.12 94
4 А 1.53 2.5 9.0 4 100 10.19 72

Wastewater treatment using coagulants and flocculants

Coagulant - ferric chloride (III)

1 А 1.2 1.0 9.0 4 250 12.25 66
2 C 1.2 1.5 9.0 6 100 8 . 24 77
3 NI 1.2 1.5 9.0 4 200 11.84 67

Conclusion

1. Based on the data obtained, optimal conditions for the treatment process are established: wastewater pH – 8.5, reagent dose – according to TP 9.5-10 mg / mg of sulfide ions. Reagent practical dose is close to theoretical value. Reagent dose for the commercial product (iron sulfate) is 237 - 250 mg / dm3 at a concentration of sulfide ions 25.0 mg / dm3. Complete precipitation of the sediment was achieved in 3 hours.

2. According to the data obtained, the most effective treatment of lignosulfonates, sulfur compounds and suspended solids in wastewater including color reduction is achieved when they are exposed to a coagulant - iron sulfate and cationic flocculant - Praestol.

Optimal conditions for the process have been established: coagulant dose – 1.53 g / dm3, flocculant dose – 1.5 mg / dm3, pH = 8.5. When the process is carried out in the optimal mode, an easily precipitated compacted sediment is formed; sulfide ion removal reaches 94%, water color reduces by 3-4 times.

Reference list

1.    Богомолов, Б. Д. Переработка сульфатного и сульфитного щелоков : учебник для вузов / Б. Д. Богомолов, С. А. Сапотницкий, О. М. Соколов [и др.]. – Москва : Лесная промышленность, 1989. – 359, [1] с. : ил. – ISBN 5-7120-0160-8 (В пер.). – Текст : непосредственный.

2. Быковский, Н. А. Очистка сульфидсодержащих сточных вод в электролизере с растворимым железным анодом / Н. А. Быковский, Л. Н Пучкова, Н. С. Шулаев. – Текст : непосредственный // Башкирский химический журнал. 2006. Том 13, № 3. С. 78–81.

3. Исследование сульфата магния в качестве коагулянта для очистки сточных вод производства целлюлозы. 1. Из льняного сырья / Н. Н. Капралова, И. Г. Шайхиев, Н. П. Григорьева, Н. А. Лебедев. – Текст : непосредственный // Вестник Казанского технологического университета. 2012. Том 15, № 5. С.29–21.

4. Проскуряков, В. А. Очистка сточных вод в химической промышленности / В. А Проскуряков, Л. И. Шмидт. – Ленинград : Химия, 1977. – 463 с. – Текст : непосредственный.

5. Седова, Е. Л. Коагуляционно-адсорбционная очистка лигнинсодержащих сточных вод / Е. Л Седова, К. Б. Воронцов. – Текст : электронный // Nauka-rastudent.ru : электронный журнал. 2014. № 7. – URL: http://nauka-rastudent.ru/7/1946/ (дата обращения: 18.03.2020).

6. Чалакова, Е. С. Эффективность использования флокулянтов различных типов после коагуляционной очистки лигнинсодержащих сточных вод / Е. С. Чалакова. – Текст : непосредственный // Инновационные технологии в науке и образовании : материалы IV Международной научно-практической конференции (Чебоксары, 18 декабря 2015 г.). – Чебоксары, 2015. – № 4 (4). – С. 34–36.

Saptarshi Pal, Shatavisha Pal Saptarshi Pal, Shatavisha Pal
Perm State Medical University Пермский Государственный Медицинский Университет
Role of virtuality in reality Роль информационных технологий в реальности
Abstract: In this research, the authors consider issue of influence of high technologies in our lives, and especially in healthcare industry. This article touches on advancements made in surgery, investigation of critical and preventive drugs, recognizing diseases and wounds with aid of technology. The author shows how technologies help with ongoing research on diseases which still cannot be cured fully. Аннотация: В этом исследовании автор рассматривает вопрос влияния высоких технологий на нашу жизнь, особенно в сфере здравоохранения. Эта статья затрагивает достижения, сделанные в хирургии, исследовании лечебных и профилактических лекарственных средств, выявлении заболеваний и ран с помощью технологий. Автор рассказывает, как технологии помогают в текущих исследованиях заболеваний, которые все еще не могут быть полностью вылечены.

Technology has helped us exploring a wide range of new world of new world. From intellect computers to our homes, we all have been influenced under the grip of technology. Not only making our lifestyle convenient but also its role in saving lives all around world. Recent advancements have actually transformed and democratized healthcare, making it more accessible, more affordable and easier than ever for people. In Healthcare technology occupies from start to end like it includes Emergency medical equipment, electronic medical records, well developed medications and drugs developed in well equipped labs, medication management systems etc. By 2025, the global healthcare IT market is expected to surpass $441 billion dollars according to new report from Global Market Insights. Let’s take a look at how technology is changing the healthcare industry:-

Surgery

Now-a-days surgery could be done while the doctor is sitting in another country and patient in another one. Robots have become in surgical room over the past decade. Not only this advanced tools & software like surgeons control miniaturized instruments from a monitor with magnifications that enables very precise work. Robotic surgery sounds like fiction but the discipline is gaining acceptance everywhere,


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.