Опорно-двигательная система клетки — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Опорно-двигательная система клетки

2023-01-16 37
Опорно-двигательная система клетки 0.00 из 5.00 0 оценок
Заказать работу

Сложный цитоскелет является опорно-двигательной системой клетки. Его составляют микрофиламенты, реснички и жгутики с базальными тельцами, клеточный центр, включающий микротрубочки и центриоли. Цитоскелет задает форму клетки, ее движение, деление и внутриклеточные перемещения.

1. Микрофиламенты, представляющие собой нити диаметром до 6 нм, состоят из актина и реже миозина. В присутствии АТФ они соединяются в длинные цепочки, могут изменять длину относительно друг друга, обеспечивая движение. Расположены микрофиламенты под клеточной мембраной, нередко присоединены к ее белкам (эритроциты), обеспечивая гибкость клеток.

2. Микроворсинки являются пучками микрофиламентов из актина, объединенных выростом цитоплазмы и покрытых плазматической мембраной.

3. Микротрубочки — тонкие нити из белка тубулина. Ориентируют перемещение органоидов в клетке, влияют на клеточную геометрию.

4. Реснички и жгутики имеют внутри стержень (аксонему), состоящий из особым образом организованных пучков микротрубочек. «Система 9+2» сообщает о том, в каком количестве микротрубочки находятся внутри жгутика и реснички: 9 дуплетов по периферии, 2 одиночные в центре. Реснички присутствуют в клетках яйцеводов, в носовой полости, в эпителии бронхов — синхронными движениями они продвигают мокроту по бронхам «к выходу», а яйцеклетку в сторону матки. Жгутики длиннее ресничек более чем в 10 раз, например, у сперматозоидов они достигают 100 мкм.

5. Базальные тельца являются как бы якорями для жгутиков и ресничек, укрепляя их в цитоплазме. Внутри базального тельца, на его периферии, находится «система 9» — совокупность триплетов, в самом же центре микротрубочек нет. Как это запомнить? Базальное тельце — важный центр, который держит реснички и жгутики, поэтому в нем «большие» триплеты, а не «маленькие» дуплеты. В центре ничего нет, так как на периферии добавлено по 1 трубочке, они как бы переместились, оставив пустоту.

6. Клеточный центр (центросома) представлен центриолями и микротрубочками, отходящими от них.

7. Центриоли расположены попарно, перпендикулярно друг другу. В них наблюдается тот же принцип строения, что и в базальных тельцах, — 9 триплетов. У высших растений центриолей нет. Делятся ли центриоли? Да, они делятся перед делением клетки (две центриоле превращаются в четыре). После удвоения центриолей из микротрубочек формируется веретено деления.

 

Жизненный цикл клетки.

Жизненный цикл клетки – последовательность событий, происходящих от момента образования данной клетки до ее деления на дочерние клетки. Согласно другому определению, клеточный цикл – жизнь клетки от момента ее появления в результате деления материнской клетки и до ее собственного деления или гибели. Время существования клетки от деления до следующего деления или смерти называют клеточным (жизненным) циклом.

В течение клеточного цикла клетка растет и видоизменяется так, чтобы успешно выполнять свои функции в многоклеточном организме. Этот процесс носит название дифференцировки. Затем клетка успешно выполняет свои функции в течение определенного промежутка времени, после чего приступает к делению.

Клеточный цикл состоит из 3-х главных стадий:

1. Интерфаза – период интенсивного роста и биосинтеза определенных веществ.

2. Митоз, или кариокинез (деление ядра).

3. Цитокинез (деление цитоплазмы).

Давайте более подробно охарактеризуем стадии клеточного цикла. Итак, первая – это интерфаза. Интерфаза – наиболее продолжительная фаза, период интенсивного синтеза и роста. В клетке синтезируется много веществ, необходимых для ее роста и осуществления всех свойственных ей функций. Во время интерфазы происходит репликация ДНК.

Митоз – процесс деления ядра, при котором хроматиды отделяются друг от друга и перераспределяются в виде хромосом между дочерними клетками.

Цитокинез – процесс разделения цитоплазмы между двумя дочерними клетками. Обычно под названием митоз цитологии объединяют стадию 2 и 3, то есть деление клетки (кариокинез), и деление цитоплазмы (цитокинез).

 

7. Интерфаза состоит из 3-х периодов: G1, S и G2.

Первый период, пресинтетический (G1) – это фаза интенсивного роста клетки. Здесь происходит синтез определенных веществ, это наиболее продолжительная фаза, которая следует за делением клеток. В этой фазе происходит накопление веществ и энергии, необходимой для последующего периода, то есть для удвоения ДНК. 2n2c

Синтетический период (S) включает удвоение ДНК, а также синтез белков, например белков гистонов, которые могут формировать хромосомы. К концу синтетического периода, каждая хромосома состоит из двух хроматид, соединенных друг с другом центромером. В этот же период центриоли удваиваются. 2n4c

Постсинтетический период (G2), наступает сразу же после удвоения хромосом. В этот же период накапливается энергия, необходимая для дальнейшего процесса деления клетки, то есть непосредственно для митоза. В этот период происходит деление митохондрий и хлоропластов, а также синтезируются белки, которые впоследствии будут образовывать микротрубочки. Микротрубочки, как вы знаете, образуют нить веретена деления, и теперь клетка готова к митозу. 2n4c

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.

8. Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

Профаза - 2n4c

· Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры - хромосомы - происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)

· Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки

· Центриоли перемещаются к полюсам клетки, образуются центры веретена деления

 

Метафаза - 2n4c

ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохоруцентромеры).

Анафаза - 4n4c

Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним - дочерние хромосомы) к полюсам клетки.

Телофаза - 2n2c

В этой фазе хроматиды (дочерние хромосомы) достигают полюсов клетки.

· Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)

· Появляется ядерная оболочка, формируется ядро

· Разрушаются нити веретена деления

В телофазе происходит деление цитоплазмы - цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений - формированием плотной клеточной стенки (которая растет изнутри к наружи). Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид - 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.

Биологическое значение митоза очень существенно:

· В результате митоза образуются дочерние клетки - генетические копии (клоны) материнской.

· Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).

· Универсальность митоза служит очередным доказательством единства всего органического мира.

Цитокинез

Деление цитоплазмы называют цитокинезом, оно обычно следует за телофазой и различается у животных и растительных клеток. У животных клеток плазматическая мембрана во время телофазы начинает впячиваться внутрь на том уровне, где прежде располагался экватор веретена. Полагают, этот процесс происходит под действием микрофиламентов.

В результате этого процесса образуется непрерывная борозда, опоясывающая клетку по экватору (рис. 2).

В конце концов, клеточные мембраны в области борозды смыкаются, полностью разделяя обе клетки.

В растительных клетках нити веретена деления во время телофазы начинают исчезать, сохраняясь лишь в области экваториальной пластинки.

Здесь они сдвигаются к периферии клетки, число их увеличивается, и они образуют бочковидное тельце, которое носит название фрагмопласт (рис. 3).

В эту область перемещаются микротрубочки, рибосомы, митохондрии, эндоплазматическая сеть (ЭПС) и аппарат Гольджи (АГ). ЭПС и АГ образуют множество мелких пузырьков с жидкостью.

Пузырьки появляются в центре клетки, а затем, направляемые микротрубочками, сливаются друг с другом, образуя клеточную пластинку. Клеточная пластинка располагается в экваториальной плоскости.

Пластинка разрастается и, в конце концов, сливается с клеточной стенкой родительской клетки. Образуется так называемая первичная клеточная стенка. А вторичная клеточная стенка образуется путем отложения на первичной клеточной стенке целлюлозы и лигнина.

Подготовка клетки к мейозу происходит в интерфазу: удваивается ДНК, накапливается АТФ, синтезируются белки веретена деления.

 

9. Мейоз включает два следующих друг за другом деления.

 

Первое деление мейоза (мейоз I) приводит к уменьшению хромосомного набора и называется редукционным. Оно включает четыре фазы.

Профаза I

Происходит скручивание молекул ДНК и образование хромосом. Каждая хромосома состоит из двух гомологичных хроматид — 2n4c.

Гомологичные (парные) хромосомы сближаются и скручиваются, т. е. происходит конъюгация хромосом.

Затем гомологичные хромосомы начинают расходиться.

При этом образуются перекрёсты и происходит кроссинговер — обмен участками между гомологичными хромосомами.

Растворяется ядерная оболочка.

Разрушаются ядрышки.

Формируется веретено деления.

 

Метафаза I

Спирилизация хромосом достигает максимума.

Пары гомологичных хромосом (четыре хроматиды) выстраиваются по экватору клетки.

Образуется метафазная пластинка.

Каждая хромосома соединена с нитями веретена деления.

Хромосомный набор клетки — 2n4c.

Анафаза 1

Гомологичные хромосомы, состоящие из двух хроматид, отходят друг от друга.

Нити веретена деления растягивают хромосомы к полюсам клетки.

Из каждой пары гомологичных хромосом к полюсам попадает только одна.

Происходит редукция — уменьшение числа хромосом вдвое.

У полюсов клетки оказываются гаплоидные наборы хромосом, состоящих из двух хроматид.

Хромосомный набор к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c.

 

Телофаза I

Происходит формирование ядер.

Делится цитоплазма.

Образуются две клетки с гаплоидным набором хромосом.

Каждая хромосома состоит из двух хроматид.

Хромосомный набор каждой из образовавшихся клеток — 1n2c .

 

Через короткий промежуток времени начинается второе деление мейоза. В это время не происходит удвоения ДНК. Делятся две гаплоидные клетки, которые образовались в результате первого деления.

 

 

Профаза II

Ядерные оболочки разрушаются.

Хромосомы располагаются беспорядочно в цитоплазме.

Формируется веретено деления.

Хромосомный набор клетки — 1n2c .

Метафаза II

Хромосомы располагаются в экваториальной плоскости.

Каждая хромосома состоит из двух хроматид.

К каждой хроматиде прикреплены нити веретена деления.

Хромосомный набор клетки — 1n2c .

Анафаза II

Нити веретена деления оттягивают сестринские хроматиды к полюсам.

Хроматиды становятся самостоятельными хромосомами.

Дочерние хромосомы направляются к полюсам клетки.

Хромосомный набор у каждого полюса — 1n1c (в клетке — 2n2c).

Телофаза II

Формируются ядра.

Делится цитоплазма.

Образуются четыре гаплоидные клетки — 1n1c.

Хромосомные наборы образовавшихся клеток не идентичны.

 

Значение мейоза

Образовавшиеся в результате мейоза клетки различаются своими хромосомными наборами, что обеспечивает разнообразие живых организмов.

Число хромосом при мейозе уменьшается в два раза, что необходимо при половом размножении. Процесс оплодотворения опять восстанавливает в зиготе диплоидный набор хромосом.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.042 с.