Законы Ома, Кирхгофа и закон сохранения энергии — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Законы Ома, Кирхгофа и закон сохранения энергии

2022-12-29 32
Законы Ома, Кирхгофа и закон сохранения энергии 0.00 из 5.00 0 оценок
Заказать работу

Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка. Пусть имеется некоторый участок цепи (рис.1.3), крайние точки которого обозначены буквами а и b.

Рис. 1.3 У часток электрической цепи между точками а и b

Пусть ток I течет от точки а к точке b (от более высокого потенциала к более низкому). Следовательно, потенциал точки аa) выше потенциала точки bb) на значение, равное произведению тока I на сопротивление R:

φ ab + IR.  

В соответствии с определением напряжение между точками а и b

Uab = φ ab.  

Напряжение Uab = IR на сопротивлении равно произведению тока, протекающего по сопротивлению, на значение этого сопротивления.

В электротехнике разность потенциалов на концах сопротивления принято называть либо напряжением на сопротивлении, либо падением напряжения.Положительное направление падения напряжения на каком-либо участке (направление отсчета этого напряжения), указываемое на рисунках стрелкой, совпадает с положительным направлением отсчета тока, протекающего по данному сопротивлению.

Рассмотрим вопрос о напряжении на участке цепи, содержащей кроме сопротивления R, ЭДС Е (рис. 1.4, а, б). Найдем разность потенциалов (напряжение) между точками а и с для этих участков. По определению Ua с = φ aс. Выразим потенциал точки а через потенциал точки с. При перемещении от точки с к точке b встречно направлению ЭДС Е (см. рис. 1.4, а) потенциал точки b оказывается меньше, чем потенциал точки с, на значение ЭДС Е: φ b = φ c - E. При перемещении от точки с к точке b согласно направлению ЭДС Е (рис.1.4, б) потенциал точки b больше, чем потенциал точки с,на значение ЭДС: φ b = φ c + E.

Так как ток течет от более высокого потенциала к более низкому, то в обеих схемах потенциал точки а выше потенциала точки b на величину падения напряжения на сопротивлении Rа= φ b + IR.

а) б)

Рис. 1.4. Участок цепи, содержащий R, ЭДС Е:потенциал точки b меньше, чем потенциал точки с, на значение ЭДС (а); потенциал точки b больше, чем потенциал точки с, на значение ЭДС (б)

Таким образом, для рис. 1.4, а:

(1.9)

для рис. 1.4, б:

(1.10)

Положительное направление напряжения Ua с показывают стрелкой от а к с. Согласно определению, U са = φ с- φ а, поэтому U ас =- U са, т.е. изменение чередования индексов равносильно изменению знака этого напряжения. Следовательно, напряжение может быть как положительной величиной, так и отрицательной.

Закон Ома для участка цепи, не содержащего ЭДС Е, устанавливает связь между током и напряжением на этом участке. Применительно к рис.1.4

или .         (1.11)

Закон Ома для участка цепи, содержащего источник ЭДС Е, позволяет найти ток этого участка по известной разности потенциалов ( φ aс) на концах этого участка цепи и имеющейся на участке ЭДС Е.

Так, из уравнения (1.11) для схемы рис.1.4, а следует

 

Из уравнения (1.11) для схемы рис.1.4, б следует:

 

В общем случае

.     (1.12)

Все электрические цепи подчиняются первому и второму законам Кирхгофа.

Первый закон Кирхгофа можно сформулировать двояко (рис.1.5, а):

1) алгебраическая сумма токов, подтекающих к какому-либо узлу схемы, равна нулю;

2) сумма подтекающих клюбому узлу токов равна сумме утекающихот этого узла токов.

а) б)

Рис. 1.5. К пояснению первого (а) и второго (б) законов Кирхгофа

Применительно к (рис.1.5, а), если подтекающие токи к узлу считать положительными, а вытекающие - отрицательными, то согласно первой формулировке I 1- I 2- I 3- I 4 = 0; согласно второй I 1 = I 2 + I 3 + I 4. Физически первый закон Кирхгофа означает, что движение электрических зарядов в цепи происходит так, что ни в одном из узлов они не скапливаются. В противном случае изменялись бы потенциалы узлов и токи в ветвях.

Второй закон Кирхгофа также можно сформулироватьдвояко (рис.1.5, б):

1) алгебраическая сумма падений напряжений в любом замкнутом контуре равна алгебраической сумме ЭДС, входящих в данный контур:

.        (1.13)

где m - число резистивных элементов; п – число ЭДС в контуре (в каждую из сумм соответствующие слагаемые входят со знаком плюс, если они совпадают с направлением обхода контура, и со знаком минус, если они не совпадают с ним);

S Ek = S I i R i, E 1- E 2+ E 3 = I 1 R 1+ I 2 R 2+ I 3 R 3+ I 4 R 4.        (1.14)

Правило: если направление тока и Е совпадает с направлением обхода то в урав­нении берётся со знаком «+», если не совпадает, то «-».

2) алгебраическая сумма напряжений вдоль любого замкнутого контура (рис.1.5, б)

,   (1.15)

где т - число элементов контура.

 

Законы Кирхгофа справедливы длялинейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Баланс мощностей

При протекании токов по сопротивлениям в них выделяется теплота. На основании закона сохранения энергии количество теплоты, выделяющееся в единицу времени в сопротивлениях цепи, должно равняться энергии, доставляемой за то же время источником питания. Если направление тока I, протекающего через источник ЭДС E, совпадает с направлением ЭДС, то источник ЭДС доставляет в цепь энергию в единицу времени, равную EI, и произведение Е I входит в уравнение энергетического баланса с положительным знаком. Если же направление тока I встречно ЭДС Е, то источник ЭДС не поставляет энергию, а потребляет ее (например, заряжается аккумулятор), и произведение Е I войдет в уравнение энергетического баланса с отрицательным знаком. Уравнение энергетического баланса при питании только от источников ЭДС имеет вид

.      (1.15)

В случае питания электрической цепи не только источниками ЭДС, но и источниками тока, при составлении уравнения энергетического баланса необходимо учесть и энергию, доставляемую источниками тока. Предположим, что к узлу а схемы подтекает ток J от источника тока, а от узла b этот ток утекает. Доставляемая источником тока мощность равна U а b J. Общий вид уравнения энергетического баланса:

.   (1.16)

2.6Эквивалентные преобразования пассивных участковэлектрической цепи

Расчет разветвленной электрической цепи, содержащей один источник энергии, целесообразно производить с помощью закона Ома.

    В этом случае прежде производят эквивалентное преобразование разветвленной цепи в неразветвленную, находя эквивалентное сопротивление пассивной части цепи относительно зажимов источника питания (рис.2.4, а,б).

а) б)

Рис. 1.6 Соединение сопротивлений: последовательное (а); параллельное (б)


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.