Метод Ньютона – метод касательных — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Метод Ньютона – метод касательных

2017-05-20 416
Метод Ньютона – метод касательных 0.00 из 5.00 0 оценок
Заказать работу

 

Пусть - корень уравнения отделен на отрезке , причем и непрерывны и сохраняют определенные знаки на этом же отрезке . Найдя какое-нибудь n-е значение корня (), уточним его по методу Ньютона. Для этого положим , где - считаем малой величиной. Разложим функцию f(x) в ряд Тейлора в окрестности точки x n по степеням h n. Тогда можно записать:

Ограничимся двумя членами ряда и так как , то:

.

Учитывая найденную поправку hn:,получим (n=0,1,2,…).

Рис.2.7 Метод касательных. Начальное приближение x0=b

По-другому этот метод называется методом касательных. Если в точке провести касательную к функции f(x), то ее пересечение с осью ОХ и будет новым приближением x1 корня уравнения

Хорошим начальным приближением является то значение, для которого выполнено неравенство . Погрешность вычислений Счет можно прекратить, когда

Теорема 2.2: Если , причем и отличны от нуля и сохраняют определенные знаки при , то, исходя из начального приближения , удовлетворяющего условию , можно вычислить методом Ньютона единственный корень уравнения с любой степенью точности.

 

Пример 2.5. Найти методом Ньютона корень уравнения x4-x-1 =0,

 

1-я производная
2-я производная положительна
один корень лежит на промежутке (-1.-0.5), второй на промежутке (1.1.5) Уточним левый корень методом Ньютона

 

 

 

 

 

Нашли корень исходного уравнения -0.7245 с точность 0.00007.

 

Рис. 2.8. Вычисления в Mathcad, реализующие метод касательных для примера 2.5

 

Модифицированный метод Ньютона

 

Если производная мало изменяется на отрезке [a,b] то в формуле можно положить . Отсюда для корня уравнения получаем последовательные приближения по формуле (n=0,1,…)..

 

Рис.2.9. Модифицированный метод Ньютона

 

Оценка точности делается, как в методе Ньютона.

 

Метод секущих

 

Заменим производную функции f(x) в точке xn на функцию F(x) в этой же точке. Подставим ее вместо производной в формулу Ньютона.

,

.

В методе секущих требуются задать для начала счета два значения x0 и x1 . Отрезок [x0, x1] не обязательно должен содержать корень уравнения.

Оценка точности делается, как в обыкновенном методе Ньютона

 

Метод итераций

 

Пусть дано уравнение

, (2.1)

где - непрерывная функция. Заменим его равносильным уравнением

. (2.2)

Выберем каким-либо способом приближенное значение корня и подставим его в правую часть уравнения (2). Получим некоторое число . Повторим данную процедуру с x1, получим . Повторяя описанную процедуру, будем иметь последовательность чисел:

, где n=1,2,…. (2.3)

Пусть у этой последовательности существует предел . Перейдем к пределу в равенстве (2.3). Предполагая функцию φ(х) непрерывной, найдем: или .

Таким образом, предел является корнем уравнения и может быть вычислен по формуле (2.3) с любой степенью точности.

На рисунке дана геометрическая интерпретация метода итераций в зависимости от знака производной функции φ(х).

 

Рис 2.10 φ'(х) > 0.

Рис.2.11 φ'(х) < 0

 

Достаточное условие сходимости процесса итераций определяется в следующей теореме.

Теорема 2.3: Пусть функция определена и дифференцируема на отрезке , причем все ее значения . Тогда, если существует правильная дробь q такая, что при , то

1. процесс итерации (n=1,2,..) сходится независимо от начального значения ;

2. предельное значение является единственным корнем уравнения на отрезке при .

 

Для оценки погрешности приближения xn получается формула:

,

где ; а на [ a,b ] При заданной точности ответа ε итерационный процесс прекращается, если

. Если q<|0.5| , то .

Сходимость итерационной последовательности определяется видом функции φ(х). Преобразование к виду (2.2) можно провести различными способами. Чтобы обеспечить сходимость, можно искать решение в виде

, (2.4)

где k-целое число. Уравнение (2.4) это уравнение (2.1) с . Оно равносильно исходному уравнению (2.1). Для сходимости метода итераций по теореме 2.3 необходимо, чтобы . Дифференцируем φ(х) и получаем . Решаем неравенство :

.

Чтобы условие сходимости выполнялось на всем промежутке [ a,b ], нужно взять , где .

Итак, если выполняются условия то метод итераций сходится для уравнения

 

Пример 2.6. Методом итераций найти корень уравнения

на промежутке (-10,-9,6) с четырьмя знаками после запятой.

 

Находим производную f(x)

 

 

 

 

 

По значению производной f(x) выбираем положительное k

В качестве начального приближения выберем левый конец промежутка. Сделаем шесть итераций.

 

 

Так как значения производной φ(x) по модулю меньше 0.5, то оцениваем точность вычислений по формуле

 

 

Корень уравнения x = -9.98071 найден с точностью 0.000038

 

Рис. 2.12. Вычисления в Mathcad, реализующие метод итераций для примера 2.6



Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.026 с.