Порядок действий при решении биквадратных уравнений — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Порядок действий при решении биквадратных уравнений

2021-05-26 39
Порядок действий при решении биквадратных уравнений 0.00 из 5.00 0 оценок
Заказать работу

1. Ввести новую переменную

2. Подставить данную переменную в исходное уравнение

3. Решить квадратное уравнение относительно новой переменной

4. После нахождения корней () подставить их в нашу переменную и найти исходные корни биквадратного уравнения

Пример решения

Решим биквадратное уравнение . Сначала приводим это уравнение к квадратному. Для этого введем вспомогательное неизвестное такое, что . Тогда . Теперь данное биквадратное уравнение приводится к виду:

Решая это квадратное уравнение, мы получим , . Так как , то данное биквадратное уравнение эквивалентно системе двух уравнений:

Решим каждое из этих уравнений и найдем объединение множеств их решений.

Ответ:

 

Понятие корня степени N. Понятие арифметического корня степени N. Понятие степени с рациональным показателем.

Понятие корня степени N

Корнем степени n из действительного числа a, где n - натуральное число, называется такое действительное число x, n -ая степень которого равна a.

Корень степени n из числа a обозначается символом . Согласно этому определению .

Нахождение корня n -ой степени из числа a называется извлечением корня. Число а называется подкоренным числом (выражением), n - показателем корня. При нечетном n существует корень n -ой степени для любого действительного числа a. При четном n существует корень n -ой степени только для неотрицательного числа a. Чтобы устранить двузначность корня n -ой степени из числа a, вводится понятие арифметического корня n -ой степени из числа a.

Понятие арифметического корня степени N

Если и n - натуральное число, большее 1, то существует, и только одно, неотрицательное число х, такое, что выполняется равенство . Это число х называется арифметическим корнем n -й степени из неотрицательного числа а и обозначается . Число а называется подкоренным числом, n - показателем корня.

Итак, согласно определению запись , где , означает, во-первых, что и, во-вторых, что , т.е. .

Поятие степени с рациональным показателем

Степень с натуральным показателем: пусть а - действительное число, а n - натуральное число, большее единицы, n -й степенью числа а называют произведение n множителей, каждый из которых равен а, т.е. . Число а - основание степени, n - показатель степени. Степень с нулевым показателем: полагают по определению, если , то . Нулевая степень числа 0 не имеет смысла. Степень с отрицательным целым показателем: полагают по определению, если и n - натуральное число, то . Степень с дробным показателем: полагают по определению, если и n - натуральное число, m - целое число, то .

См. также Свойства степеней

См. также Таблица степеней

 

Основные свойства степеней

"Свойства степеней" - довольно популярный запрос в поисковых системах, что показывает большой интерес к свойствам степени. Мы собрали для вас все свойства степени (свойства степени с натуральным показателем, свойства степени с рациональным показателем, свойства степени с целым показателем) в одном месте. Вы можете скачать краткую версию шпаргалки "Свойства степеней" в формате.pdf, чтобы при необходимости легко их вспомнить, или ознакомиться со свойствами степеней прямо на сайте. Более подробно свойства степеней с примерами рассмотрены ниже.

Скачать шпаргалку "Свойства степеней" (формат.pdf)

Свойства степеней (кратко)

1. a0=1, если a≠0

2. a1=a

3. (−a)n=an, если n - четное

4. (−a)n=−an, если n - нечетное

5. (a⋅b)n=an⋅bn

6. (ab)n=anbn

7. a−n=1an

8. (ab)−n=(ba)n

9. an⋅am=an+m

10. anam=an−m

11. (an)m=an⋅m

Свойства степеней (с примерами)

1-е свойство степени
Любое число отличное от нуля в нулевой степени равно единице.
a0=1, если a≠0
Например: 1120=1, (−4)0=1, (0,15)0=1

2-е свойство степени
Любое число в первой степени равно самому числу.
a1=a
Например: 231=23, (−9,3)1=−9,3

3-е свойство степени
Любое число в четной степени положительно.
an=an, если n - четное (делящееся на 2) целое число
(−a)n=an, если n - четное (делящееся на 2) целое число
Например: 24=16, (−3)2=32=9, (−1)10=110=1

4-е свойство степени
Любое число в нечетной степени сохраняет свой знак.
an=an, если n - нечетное (не делящееся на 2) целое число
(−a)n=−an, если n - нечетное (не делящееся на 2) целое число
Например: 53=125, (−3)3=−33=−27, (−1)11=−111=−1

5-е свойство степени
Произведение чисел, возведенн ое в степень, можно представить как произведение чисел возведенн ых в эту степень (и наоборот).
(a⋅b)n=an⋅bn, при этом a, b, n - любые допустимые (не обязательно целые) числа
Например: (2,1⋅0,3)4,5=2,14,5⋅0,34,5

6-е свойство степени
Частное (деление) чисел, возведенн ое в степень, можно представить как частное чисел возведенн ых в эту степень (и наоборот).
(ab)n=anbn, при этом a, b, n - любые допустимые (не обязательно целые) числа
Например: (1,75)0,1=(1,7)0,150,1

7-е свойство степени
Любое число в отрицательной степени равно обратному числу в этой степени. (Обратное число это число на которое нужно умножить данное число, чтобы получить единицу.)
a−n=1an, при этом a и n - любые допустимые (не обязательно целые) числа
Например: 7−2=172=149

8-е свойство степени
Любая дробь в отрицательной степени равна обратной дроби в этой степени.
(ab)−n=(ba)n, при этом a, b, n - любые допустимые (не обязательно целые) числа
Например: (23)−2=(32)2, (14)−3=(41)3=43=64

9-е свойство степени
При умножении степеней с одинаковым основанием показатели степени складываются, а основание остается прежним.
an⋅am=an+m, при этом a, n, m - любые допустимые (не обязательно целые) числа
Например: 23⋅25=23+5=28, обратите внимание, что это свойство степени сохраняется и для отрицательных значений степеней 3−2⋅36=3−2+6=34, 47⋅4−3=47+(−3)=47−3=44

10-е свойство степени
При делении степеней с одинаковым основанием показатели степени вычитаются, а основание остается прежним.
anam=an−m, при этом a, n, m - любые допустимые (не обязательно целые) числа
Например: (1,4)2(1,4)3=1,42−3=1,4−1, обратите внимание, как применяется это свойство степени к отрицательным значения степеней3−236=3−2−6=3−8, 474−3=47−(−3)=47+3=410

11-е свойство степени
При возведении степени в степень степени перемножаются.
(an)m=an⋅m
Например: (23)2=23⋅2=26=64

Аблица степеней до 10

Мало кому удается запомнить всю таблицу степеней, да и кому это нужно когда ее так легко найти? Наша таблица степеней включает в себя как популярные таблицы квадратов и кубов (от 1 до 10), так и таблицы других степеней, которые встречаются реже. В столбцах таблицы степеней указываются основания степени (число, которое нужно возвести в степень), в строках – показатели степени (степень, в которую нужно возвести число), на пересечении нужного столбца и нужной строки находится результат возведения нужного числа в заданную степень. Существуют несколько типов задач, решаемых с помощью таблицы степеней. Прямая задача – это вычислить n -ю степень числа. Обратная задача, которая так же может быть решена с помощью таблицы степеней, может звучать так: "в какую степень нужно возвести число a, чтобы получить число b?" или "Какое число в степени n дает число b?".

Таблица степеней до 10

  1 n 2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 n
1 1 2 3 4 5 6 7 8 9 10
2 1 4 9 16 25 36 49 64 81 100
3 1 8 27 64 125 216 343 512 729 1000
4 1 16 81 256 625 1296 2401 4096 6561 10000
5 1 32 243 1024 3125 7776 16807 32768 59049 100000
6 1 64 729 4096 15625 46656 117649 262144 531441 1000000
7 1 128 2187 16384 78125 279936 823543 2097152 4782969 10000000
8 1 256 6561 65536 390625 1679616 5764801 16777216 43046721 100000000
9 1 512 19683 262144 1953125 10077696 40353607 134217728 387420489 1000000000
10 1 1024 59049 1048576 9765625 60466176 282475249 1073741824 3486784401 10000000000

 


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.006 с.