Роль гигиенической и экологической наук в обеспечении профилактических задач здравоохранения. Факторы, формирующие здоровье населения. — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Роль гигиенической и экологической наук в обеспечении профилактических задач здравоохранения. Факторы, формирующие здоровье населения.

2021-10-05 51
Роль гигиенической и экологической наук в обеспечении профилактических задач здравоохранения. Факторы, формирующие здоровье населения. 0.00 из 5.00 0 оценок
Заказать работу

Роль гигиенической и экологической наук в обеспечении профилактических задач здравоохранения. Факторы, формирующие здоровье населения.

Гигиена – наука о сохранении и укреплении общественного здоровья путем проведения профилактических заболеваний. Объектом изучения гигиены явл. Здоровый человек во взаимодействии с окружающей средой. Санитария (в переводе с латинского языка — "здоровье")-является практикой гигиены. Санитарная служба контролирует выполнение на практике санитарно-гигиенических рекомендаций и противоэпидемических мероприятий, разрабатываемых соответственно гигиеной и эпидемиологией. Для нормального функционирования организма человека в окружающей среде необходимы определенные условия, которые создаются физическими, химическими, биологическими и социальными факторами среды обитания. Влияние этих факторов на организм человека могут быть благоприятные, негативные, факторы риска для здоровья. Негативные факторы могут быть: ~Катастрофическими~Тяжелыми~Неблагоприятными. Факторы риска при отсутствии определенных условий не могут стать причиной заболевания. Первой задачей гигиены является выявление связи между окружающей средой и организмом человека. Если обнаруживаются негативные факторы, то разрабатываются профилактические мероприятия. Профилактика-это система государственных, социально-экономических и медицинских мероприятий, направленных на улучшение состояния окружающей среды. Различают: Первичную, вторичную, третичную профилактику. Первичная- направлена на устранение причины заболевания, осуществляется в виде ПДК,ПДУ(предельно-допустимых концентраций, и уровней), снижающих воздействие факторов до безопасных уровней. Вторичная профилактика-ранняя диагностика заболевания у лиц. Уже подвергшихся воздействию или имеющих факторы риска. Третичная-Предупреждение ухудшения состояния здоровья, лечение и реабилитация. Вторая задача предусматривает воздействие на организм самого человека-это разработка средств и способов повышения устойчивости организма к влиянию негативных факторов окр.ср. В них входят: личная гигиена, здоровый образ жизни, правильное питания, закаливание, одежда и обувь в соответствии с норм., физ-ра. А так же врачи должны пропагандировать здоровый образ жизни. Изучение влияния факторов окр.ср. на организм человека производится физиологическими, антропометрическими, биохимическими методами исследования. Гигиена использует метод эксперимента, с помощью него искусственно создаются условия среды и влияния этой среды на живой организм. А так же гигиена использует эпидемиологический, санитарно-статистический, клинический методы.

Экология –наука которая изучает законы существования живых орг-мов, их взаимосвязь между собой и со средой их обитания. Экология человека-наука о законах взаимодействия биосферы и антропосистемы, чел-их групп и индивидуумов, влиянии природы на человека и групп людей.

Гигиена и экология человека исследуют одни и те же явления, т.е. влияние факторов окружающей среды на здоровье человека, выделяя те из них, которые особо существенны при формировании патологии человека или групп населения. К этим факторам относят следующие: Генетические (формируют наследственные заболевания); Природно-климатические (вызывают в жарком климате кожные и инфекционные заболевания, в холодном — простудные); Эндемические (возникают заболевания вследствие биогеохимических особенностей местностей естественного и антропогенного происхождения); Эпидемические (вызывают природно-очаговые инфекции);Производственные (появляются профессиональные заболевания); Социальные (появляются заболевания, обусловленные неправильными питанием, образом жизни, снижением уровня социального благополучия);Экологические (заболевания, связанные с воздействием негативных и неблагоприятных факторов окружающей среды).

 

 

Солнечная радиация и ее биологическое действие. Биологическое значение ультрафиолетовой части солнечного спектра.

Содержание обучения

Солнечная радиация – интегральный поток электромагнитных колебаний и корпускулярных частиц, включающий в себя лучи Рентгена, гамма лучи, световые (видимые), инфракрасные (тепловые) и ультрафиолетовые лучи, а также радиоволны.

Составляющими солнечного излучения являются:

- прямое (исходит непосредственно от солнца);

- рассеянное (от небесного свода);

- отражение (от поверхности различных предметов).

Атмосфера пропускает до поверхности Земли только оптическую часть спектра, в которую входят невидимые ультрафиолетовые (290-400 нм), видимые световые (400-760 нм) и невидимые инфракрасные лучи (760-2800 нм). У поверхности Земли ультрафиолетовая часть составляет 1%, видимая – 40%, инфракрасная – 59%.

Солнечная радиация оказывает влияние на обмен веществ в организме, его тонус и работоспособность, является мощным оздоровительным и профилактическим природным фактором. Помимо теплового эффекта и влияния на функции органа зрения она оказывает многообразное биологическое действие на весь организм.

Солнечная радиация имеет 2 характеристики:

1. Количественная – определяется интенсивностью (напряжением) радиации в калориях в минуту на 1 см поверхности, расположенной перпендикулярно к источнику излучения. Эталоном является солнечная постоянная - измеряется на границе атмосферы, где воздействие факторов, способствующих поглоще­нию, отражению и рассеиванию солнечных лучей, минимально. Этот показа­тель равен 1,94 кал/см2/мин и показывает максимальное напряжение солнечной энергии.

2. Качественная - определяется длиной волны различных видов лучистой энергии.

Факторы, определяющие напряжение солнечной радиации:

1. Состояние погоды (облака, осадки и т.д.);

2. Степень загрязнения атмосферного воздуха;

3. Высота стояния столба (массы воздуха);

4. Широта местности (определяет угол падения солнечных лучей (чем ближе к экватору, тем меньше рассеянная солнечная радиация);

5. Время суток, года.

Наибольшее значение для гигиенической оценки внешней среды имеет оптический спектр - Инфракрасное излучение (760-2800 нм)

 видимые (400-760)и ультрафиолетовые лучи(200-320нм).

Лучистая энергия солнца и в частности ее наиболее биологически активная область – ультрафиолетовая радиация, является постоянно действующим фактором внешней среды.

По характеру биологического действия ультрафиолетовую часть спектра условно делят на три области – А, В, С. Длинноволновая область А(320-400 нм) обладает преимущественно загарным действием, средневолновая область В (280-320 нм) – витаминообразующим действием, что позволяет применять этот вид излучения в качестве лечебного профилактического средства. При действии ультрафиолетового излучения области В провитамин 7, 8 – дегидрохолестерин в коже человека переходит в активную форму. Область С (200-280 нм) обладает преимущественно бактерицидным действием, в основе которого лежит нарушение жизнедеятельности микробных клеток, возникающее благодаря фотохимическому расщеплению белковых компонентов области.

Ультрафиолетовая часть солнечного спектра обладает наибольшей биологической активностью, является фактором внешней среды, имеющим большое значение для профилактики заболеваний и укрепления здоровья человека.

 Ультрафиолетовая недостаточность отрицательно отражается на здоровье и проявляется снижением адаптационных возможностей организма, окислительно-восстановительных процессов, ухудшением регенерации тканей, нарушением фосфорно-кальциевого обмена, стойкости капилляров, поражением нервной системы, системы кроветворения, паренхиматозных органов, повышением утомляемости, снижением работоспособности и сопротивляемости организма к токсическим, канцерогенным, мутагенным и инфекционным агентам. Наиболее частым проявлением ультрафиолетовой недостаточности является гиповитаминоз или авитаминоз D. У взрослых нарушение фосфорно-кальциевого обмена на почве гиповитаминоза D проявляется в плохом срастании костей при переломах, ослаблении связочного аппарата суставов, в быстром разрушении эмали зубов. Ультрафиолетовая недостаточность у детей в условиях нормального питания является ведущим фактором экзогенного рахита.

Противопоказаниями для облучения человека искусственным УФ излучением являются заболевания активной формой туберкулеза, щитовидной железы, резко выраженный атеросклероз, заболевания сердечно-сосудистой системы, печени, почек, малярия, злокачественные новообразования.

Биологический эффект ультрафиолетовых лучей зависит от длины волны.

Зона А (320-400 нм) или длинноволновое излучение – обладает эритемно-загарным или пигментобразующим действием. В результате фотохимических реакций возникает резко очерченная эритема, переходящая в загар. Лучи этой зоны обладают флуоресцентным действием, что используется для диагностики в медицине.

Зона В (280-320 нм) или средневолновое излучение - оказывает специфическое антирахитическое (D-витаминообразующее) действие за счет образования в результате фотохимических реакций витамина D. При недостатке УФ радиации у детей возникает рахит, у взрослых - нарушение фосфорно-кальциевого обмена. Оказывает также слабое бактерицидное действие.

Зона С (200-280 нм) или коротковолновое излучение оказывает бактерицидное действие, убивает патогенные микробы, находящиеся в воздухе, воде, на поверхности почвы, способствуя самоочищению природной среды.

Коротковолновая ультрафиолетовая радиация повреждает биологическую ткань. Биологические объекты не подвергаются губительному действию коротковолновой ультрафиолетовой радиации, т.к. таких лучей до поверхности земли доходит мало в силу их рассеяния в верхних слоях атмосферы.

Абиогенное действие УФ радиации. При увеличении суммарной зрительной дозы происходит угнетение синтеза ДНК, торможение функции ЦНС, гипертрофия клеток надпочечников, нарушение обмена витаминов, лейкоцитоз, усиление онкогенеза. Это проявляется в виде ожогов, фотодерматоза, опухолей, фототоксикоза, фотоаллергии, кератоконъюнктивита, фотокератита, катаракты и др.

 

Загрязнение подземных вод

Загрязнение грунтовых и межпластовых вод возникает, в основном, при утечке технологических и сточных вод, а также при наличии прилегающих фильтрующих земляных сооружений, используемых для сбора, хранения и испарения жидких отходов производства. В зависимости от характера производства вместе со стоками в подземные воды могут перейти тяжелые металлы, ароматические вещества, нефтепродукты и многие другие. Из хозяйственно-бытовых в подземные воды могут проникать и бактериальные загрязнения, соединения азота, ПАВ, входящие в состав синтетических моющих средств. При неконтролируемом использовании в сельском хозяйстве пестицидов, минеральных удобрений и ядохимикатов последние вместе с оросительными и атмосферными водами загрязняют и грунтовые воды. Борьба с загрязнениями, попавшими в подземные воды, крайне сложна и требует дорогостоящих очистительных мероприятий, следовательно, основным средством защиты подземных вод являются тщательные профилактические мероприятие.

Загрязнение Мирового океана

Постоянно увеличивающаяся нагрузка на Мировой океан ведет к постепенной деградации морских экосистем. Моря загрязняются в результате прямого сброса, поступление загрязнений вместе с водой впадающих в моря рек, в результате аварий морских судов, за счет прямого осаждения различных видов загрязнений из атмосферы и другими путями. Последствием такого загрязнения может быть включение их в «пищевую цепь» посредством заражения морских животных и других продуктов морского происхождения. Наибольшую опасность представляет нефтяное загрязнение. Нефтепродукты не смешиваются с водой, а образуя на ее поверхности пленку, препятствуют воздухообмену между водой и атмосферой. В результате обеднения воды кислородом погибает планктон и, как следствие, это нарушает жизнедеятельность других обитателей моря―рыбы и водоплавающих птиц. Океанические воды, как и другие типы вод, также загрязняются другими типами промышленных веществ.

Нормы потребления белка

Суточная потребность в белках составляет 0.8 – 1.2 на кг массы тела;

Белки животного происхождения должны составлять 55% суточного рациона взрослых и 60% - детей.

Животного происхождение


Мясо, птица

Рыба

Яйца

Сыры

Творог тощий

Творог жирный

Молоко

Растительного происхождения

Горох, фасоль, чечевица

Орехи


Может быть анемия.

27. Жиры пищи, их классификация и значение для организма. Нормы потребления для населения с учетом климатических условий. Продукты – поставщики жиров в питании детей и взрослых.

Жиры-сложные органические соединения, состоят:

– Триглицеридов (глицерин и жирные кислоты);

– Липоидных веществ (фосфолипиды, стерины).

Пищевые жиры

1.Растительные (масла):

подсолнечное,

кукурузное,

оливковое,

соевое масла и др.

2. Животные (жиры):

сливочное масло,

маргарин,

свиное сало,

бараний жир,

говяжий жир,

рыбий жир.

Функции углеводов

§ Основная функция углеводов - обеспечение организма энергией (1г – 4ккал);

§ Участвуют в пластическом обмене;

§ Являются составными частями гликопротеидов;

§ Предшественники гликогена и триглицеридов;

§ Оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А.

Потребность в углеводах

Углеводы должны составлять 55-75% от общей калорийности рациона питания;

Потребление чистого сахара не должно превышать 10% от общего количества углеводов;

Витамины (от латинского vita – жизнь) - группа эссенциальных, микронутриентов, участвующих в регуляции и ферментативном обеспечении метаболических процессов, но не имеющих пластического и энергетического значения.

Витамины

§ они играют важную роль в основных обменных процессах;

§ не образуются в организме человека в необходимых количествах и должны поступать с пищей;

§ относятся к микронутриентам, т.е. их суточную потребность выражают в микроколичествах;

§ имеют клинические и (или) лабораторные признаки гиповитаминозных состояний при их недостаточном поступлении с питанием.


Роль витаминов в обменных процессах:

Свою роль в обменных процессах большинство витаминов выполняют находясь в составе ферментов. К настоящему времени известно свыше 100 тканевых и клеточных ферментов, в состав которых входят витамины и примерно столько же различных биохимических реакций, невозможных без витаминов.

Содержание витаминов в продуктах значительно ниже, чем основных нутриентов – белков, жиров и углеводов, и не превышает, как правило, 10-100мг/100г продукта.

Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов. Биологическая ценность жирорастворимых витаминов в значительной мере связана с их участием в контроле функционального состояния мембран клетки и субклеточных структур. Необходимость водо- и жирорастворимых витаминов для нормального течения различных биологических процессов предопределяет развитие выраженных нарушений деятельности органов и систем при дефиците любого из витаминов. КЛАССИФИКАЦИЯ ВИТАМИНОВ


Жирорастворимые витамины:

Витамин А. Витамин D (кальциферолы). Витамин Е (токоферолы). Витамин К.

Водорастворимые витамины:

Тиамин (витамин В 1). Рибофлавин (витамин В 2). Пиридоксин (витамин В 6). Цианокобаламин (витамин В 12). Аскорбиновая кислота (витамин С). Витамин Р (биофлавоноиды, полифенолы). Витамин РР (ниацин, никотиновая кислота). Фолацин (фолиевая кислота). Пантотеновая кислота (витамин В 3). Биотин (витамин Н).

 

 

Физиологическое значение.

1. Рибофлавин участвует в окислительно-восстановительных процессах, т.е. образует часть окислительно-восстановительной системы, действуя в качестве переносчика водорода к кислороду.

2. Участвует в обмене аминокислот в организме, в усвоении и синтезе жиров.

3. Участвует в обеспечении цветового и светового зрения.

4. Влияет на рост и регенерацию тканей, синтез гемоглобина.

5. Понижает возбудимость высших нервных центров.

6. Входит наряду с витаминами В1 и РР в состав ферментов, окисляющих молочную кислоту до пировиноградной, а последнюю до воды и углекислоты.

Экзогенная и эндогенная недостаточность.  При недостаточном поступлении витамина В2 в организм человека развивается гипорибофлавиноз.

При рибофлавинозе отмечается отсутствие аппетита, потеря веса, слабость, головная боль, чувство жжения кожи стоп, также воспаление слизистой оболочки полости рта, болезненность в углах рта и нижней губе.

Для арибофлавиноза характерна триада Зебреля: дерматит, глоссит, хейлит.

Развивается себорейный дерматит носогубных складок, крыльев носа, век, кожи лица в виде ее покраснения и шелушения, больные отмечают чувство жжения и зуда. На красной кайме губ застойная гиперемия, шелушение, появление трещин и корочек в углах рта (ангулярный стоматит или «заеды»). После отторжения корочек остаются эрозии и язвы. Спинка языка становится гладкой, блестящей, ярко-красной, сухой. При арибофлавинозе развиваются также изменения со стороны глаз. Вначале отмечается быстрая утомляемость зрения, светобоязнь, слезотечение, ощущение жжения, затем развивается кератит, отмечается усиленная васкуляризация и помутнение роговой оболочки, часто развивается конъюнктивит, блефарит.

Потребность. Физиологическая норма для рибофлавина, принятая в РФ, равна 1,7 – 2,4 мг для мужчин и 1,3 – 1,8 мг для женщин в зависимости от энерготрат. По нормам ФАО/ВОЗ потребность в витамине В2 составляет 0,55 мг на 1000 ккал.

 

Никотиновая кислота, ниацин (Витамин РР или В3)

Никотиновая кислота и ее амид широко распространены в растительных и особенно животных объектах. В растительных продуктах ниацин представлен в виде никотиновой кислоты. Ею богаты рисовые отруби, пшеничные зародыши, гречневая крупа, кукуруза, бобовые (зеленый горох, чечевица, фасоль, соя), арахис, шпинат, томаты, картофель, грибы, хлеб из муки грубого помола. Из продуктов животного происхождения наиболее богаты ниацином печень, почки, рыба.

Физиологическое значение.

1. Участвует в окислительно-восстановительных процессах, являясь незаменимым компонентом коферментов НАД и НАДФ;

2. Участвует в обмене веществ в организме, особенно в азотистом обмене;

3. Влияет через автономную (вегетативную) систему на гемодинамические реакции сердечно-сосудистой системы (например, снижение артериального давления).

4. Усиливает процессы торможения в нервной системе.

Экзогенная и эндогенная недостаточность.  Первые признаки РР-гиповитаминоза нередко проявляются     прежде всего в полости рта. Язык отечен, с отпечатками зубов на боковых поверхностях, увеличен в размере, на спинке имеется плотный сухой темнокоричневый налет, разделенный бороздками, который затем отторгается и язык становится в этих участках гладким, блестящим, яркокрасным, резко болезненным. Отмечается глоссит, стоматит, маргинальный гингивит. Слизистая оболочка полости рта гиперемирована. Часто одним из признаков гиповитаминоза РР становится неврастенический синдром: раздражительность, бессонница, подавленность, заторможенность.

При РР-авитаминозе (пеллагре) имеются типичные изменения в виде триады «Д» - деменция, диарея, дерматит. Острая форма пеллагры протекает очень тяжело, преимущественно с симптомами со стороны ЦНС и психики (энцефалопатия).                                             

Эндогенная, вторичная недостаточность никотиновой кислоты наблюдается при воспалительно-дистрофических заболеваниях ЖКТ, невритах, аллергических дерматозах, отравлениях свинцом, бензолом, таллием.

Потребность. Суточная потребность в никотиновой кислоте составляет 15-28 мг. Люди, работающие в условиях повышенного нервно-психического напряжения должны получать повышенные дозы никотиновой кислоты, так как она оказывает центральное регулирующее влияние на высшую нервную деятельность.

Среди эндогенных факторов, влияющих на потребность в никотиновой кислоте, наибольшее значение имеют беременность и кормление грудью, затем заболевания ЖКТ, различные инфекции, нервно-психические заболевания, интоксикации. Потребность в витамине РР повышается при приеме медикаментов – сульфаниламидных препаратов, антибиотиков, фтивазида и тубазида, представляющих собой аналоги – антагонисты никотиновой кислоты, и т.д.

 

Пиридоксин (Витамин В6)

Хорошим источником пиридоксина служат: мясо, печень, рыба, яйца (преимущественно желток), пшеничная мука, картофель, морковь, дрожжи. Потребность в витамине В6 покрывается синтезом бактериальной флоры человека. Физиологическое значение.

1. Входит в состав различных ферментов, участвующих в белковом обмене.

2. Необходим для поддержания нормальной функции центральной нервной системы.

3. Влияет на обмен серосодержащих аминокислот.

4. Способствует образованию гемоглобина.

5. Принимает участие в обмене ненасыщенных жирных кислот (линолевой, линоленовой).

Экзогенная и эндогенная недостаточность. Первичного В6-авитаминоза у человека не бывает, так как потребность его в обычных условиях покрывается продуктами питания и частично синтезом бактериальной флорой кишечника. Проявления недостаточности могут развиться при длительном подавлении кишечной флоры антибиотиками или при приеме фтивазида, в период беременности, при охлаждении, физических нагрузках, туберкулезе, заболевании крови (остром лейкозе), заболевании почек.

Клинические проявления гиповитаминоза: повышенная раздражительность, иногда заторможенность, сонливость, дерматит (в области носогубной складки, под бровями, вокруг глаз), судороги. Витамин В6 стимулирует обменные процессы в слизистой оболочке рта, поэтому при его недостаточности развивается стоматит, глоссит. Возможно развитие периферических полиневритов.

Потребность. Рекомендуемые нормы потребления пиридоксина в нашей стране установлены для мужчин на уровне 2, для женщин – 1,8 мг/сут.

Фолиевая кислота, фолацин(Витамин Вс)

Фолиевая кислота и ее производные широко распространены в природе. Хорошим источником фолиевой кислоты служат зеленые овощи и фрукты: шпинат, картофель, цветная капуста, апельсины,

Исключительно богаты фолиевой кислотой печень и почки. Сравнительно много фолацина в хлебе из муки грубого помола.

Физиологическое значение.

1. Стимулирует кроветворение – ведет к повышению содержания гемоглобина и росту числа эритроцитов, лейкоцитов и тромбоцитов.

2. Входит в состав ферментов, участвующих в синтезе белка и аминокислот (метионина).

3. Принимает участие в биосинтезе нуклеиновых кислот.

Экзогенная и эндогенная недостаточность. При недостатке фолацина страдают прежде всего ткани, для которых характерны интенсивный синтез ДНК и высокая скорость деления клеток – кроветворная ткань и слизистая оболочка кишечника. Развивается макроцитарноя (мегалобластическая) гиперхромная анемия. Наряду с нарушением эритропоэза тормозится функция белого ростка крови с развитием лейко- и тромбоцитопении. Со стороны органов пищеварения выяляются стоматит, гастрит, энтерит. Дефицит фолацина во время беременности может оказывать тератогенное действие, быть причиной недоношенности, врожденных уродств, нарушений психического развития новорожденных.

Потребность. Рекомендуемые нормы потребления фолацина в нашей стране составляют (мкг/сут): для детей до 6 мес – 40, от 6 до 12 мес – 60, до 3 лет – 100; для взрослых мужчин и женщин – 200. Эта норма повышается у женщин при беременности еще на 200 и во время кормления грудью – на 100.

 

Цианкобаламин (Витамин В12)

Основным источником кобаламина для человека являются продукты животного происхождения: мясо, творог, сыр, печень, почки. Зеленые растения цианкобаламина не синтезируют. В сутки из пищи усваивается примерно 25% витамина.

Физиологическое значение.

1. Участвует в созревании кровяных элементов в костном мозгу.

2. Необходим для нормального роста человека и животных вследствие его стимулирующего влияния на образование нуклеиновых кислот и на синтез белка.

3. Вызывает липотропный эффект – понижение холестерина у больных атеросклерозом.

4. Положительно влияет на обменные процессы в сердечной мышце и щитовидной железе.

5. Способствует превращению каротина в витамин А.

Экзогенная и эндогенная недостаточность. Недостаточность витамина В12 алиментарного происхождения развивается при длительном отсутствии в рационе продуктов животного происхождения (единственный источник витамина), в частности у вегетарианцев. Недостаток витамина В12 может также возникнуть у беременных женщин и хронический алкоголиков.       

Признаком недостаточности витамина В12 эндогенного происхождения является пернициозная анемия. Она выражается мегалобластическим перерождением костного мозга, гиперхромной анемией, поражением языка и слизистой оболочки рта, атрофией слизистой оболочки дна желудка, фуникулярным миелозом.

Клиническая картина пернициозной анемии характеризуется нарушениями кроветворения, изменениями со стороны нервной и пищеварительной систем. Заболевание развивается постепенно. Появляются общая слабость, недомогание, головокружение. К ранним, но непостоянным симптомам относятся покалывание и жжение языка.

Потребность. Рекомендуемые величины потребления витамина В12 должны быть достаточными не только для предупреждения анемии, но и для создания запасов витамина в печени. Согласно отечественным рекомендациям у детей от рождения до 10 лет эта величина постепенно возрастает с 0,3 до 2 мкг/сут. Для остальных возрастных групп она составляет 3 мкг/сут, у беременных и кормящих женщин повышается до 4 мкг/сут.

 

 

Физиологическое значение.

 

 

1. Регулирует фосфорно-кальциевый обмен в организме и тем самым способствует процессу костеобразования.

2. Повышает усвоение пищевого кальция в кишечнике, поддерживает нормальный уровень кальция в крови.

3. Улучшает обеспечение организма фосфором за счет усиления его реабсорбции в почках.

Экзогенная и эндогенная недостаточность. Типичным симптомом недостаточности витамина Д является рахит, начинающийся с 2-4-го месяца жизни ребенка и продолжающийся до 1,5-2 лет. Вначале наблюдаются нехарактерные нарушения: повышенная раздражительность ребенка, слабость, потливость, особенно головы, запоздалое прорезывание зубов, склонность к бронхитам. Физиологическое окостенение родничков резко замедляется. Через 2-3 нед обнаруживаются изменения скелета, что приводит к мягкости костей и характерным деформациям, особенно резко выраженным у быстро растущих детей. Деформации обнаруживаются раньше всего в костях черепной крышки и в грудной клетке. Спустя несколько месяцев, когда ребенок начинает сидеть, а затем стоять, наступают искривления позвоночника, деформации бедер, голеней и в гораздо меньшей степени верхних конечностей.

Недостаточность витамина Д у взрослых проявляется изменениями диафиза костей. Этот процесс носит название «остеомаляция». Патологические изменения при ней заключаются в чрезмерном образовании остеоидной ткани и в развитии остеопороза. 

Потребность.  Потребность человека в витамине Д составляет 400 МЕ (10мкг) в сут. При достаточной и регулярной инсоляции эта потребность обеспечивается за счет фотохимического образования холекальциферола в коже.

Профилактика Д-витаминной недостаточности. Достигается регулярной инсоляцией, а при ее недостатке, особенно у пожилых людей, путем приема витаминных препаратов, содержащих физиологические дозы витамина Д (200-400 МЕ/сут), или обогащенных этим витамином продуктов питания, например витаминизированного молока. Во время беременности и кормления грудью женщинам рекомендуется прием витаминизированных комплексов, содержащих 400-600 МЕ/сут витамина Д, в сочетании с другими витаминами и кальцием.

Токоферол (Витамин Е)

Токоферол широко распространен в природе. Он присутствует во всех тканях организма, где обнаруживается главным образом в липопротеиновых мембранах клеток и субклеточных органелл. Из продуктов наиболее богаты токоферолом растительные масла, особенно кукурузное и хлопковое. Продукты животного происхождения бедны витамином Е: сливочное масло, мясо, сало, молоко. Из овощей источниками витамина Е являются зеленые бобы, зеленый горох свежий, горох сухой, кочанный салат, из зерновых – овес, кукуруза, рожь, пшеничные зародыши, пшеничная обойная мука, пшеничные отруби.

Из пищи в тонком кишечнике в присутствии желчных и жирных кислот, секрета поджелудочной железы всасывается примерно 50% витамина Е от его поступившего количества.

Физиологическое значение.  

1. Участвует в образовании гонадотропного гормона гипофиза.

2. Способствует нормальному течению беременности и развитию плода, а также активно участвует в процессах образования спермы.

3. Обладает антиоксидантной активностью (блокирует перекисное окисление липидов)

4. Способствует нормальному содержанию гликогена печени, улучшает жировой, белковый и минеральный обмен.

5. Входит в состав противосвертывающей системы крови и участвует в предотвращении неестественной коагуляции в сосудах.

6. Способствует накоплению в организме витамина А и других жирорастворимых витаминов, предохраняет ненасыщенные жирные кислоты от окисления, участвует в фосфорилировании.

Экзогенная и эндогенная недостаточность. Поскольку витамин Е депонируется в организме во многих тканях (мышцы, поджелудочная железа, жировая ткань), развитие авитаминоза не описано. К основным симптомам гиповитаминоза витамина Е относятся арефлексия, атаксия, снижение вибрационной чувствительности, парез зрительного нерва, повышенная утомляемость, невозможность сосредоточиться, летаргия, дегенерация мышц. Следствием дегенеративных и дистрофических изменений мышц является резкое ограничение подвижности, в мышцах резко снижается количество миозина, гликогена, калия, магния, фосфора и креатина и, наоборот, повышается содержание липидов и хлорида натрия. В таких случаях ведущими симптомами являются гипотония и слабость мышц, бывают мышечные спазмы. При глубоком дефиците витамина Е в организме развиваются дегенеративные изменения в миокарде, повышаются проницаемость и ломкость капилляров; наблюдается снижение концентрации белков в сыворотке крови и содержания нуклеиновых кислот в печени

 

и семенниках. При дефиците витамина Е отмечены выраженное развитие атеросклероза, преждевременное старение; при авитаминозе – стерильность.

Потребность. Среднесуточная норма потребления витамина Е составляет 10-30 мг в день. Беременность, кормление грудью, применение оральной контрацепции, заместительная гормонотерапия, курение повышают нормы потребления токоферола.  

Витамин Е разрушается при готовке и переработке продуктов, под действием замораживания, глубокого прожаривания, ультрафиолетовых лучей, при прогоркании масла. Перемалывание злаков способствует удалению практически всего витамина Е, рафинирование растительного масла снижает его содержание на четверть. При употреблении хлорированной воды также нужны дополнительные количества витамина Е.

Филлохинон (Витамин К,»витамин коагуляции»,»антигеморрагический витамин»)

Витамин К образуется в зеленых частях растений, а также синтезируется кишечной микрофлорой. Из пищевых продуктов витамином К богаты некоторые овощи: шпинат, капуста, томаты, листья крапивы; а также мясные продукты, в частности печень.

Физиологическое значение.  

1. Участвует в процессе свертывании крови за счет регуляции биосинтеза свертывающих факторов в печени (протромбина и др.)

  2. Повышает сократительную способность мышц в результате воздействия витамина К на миозин – сократительный белок мышечных волокон.

3. Усиливает регенерацию тканей и ускоряет заживление ран, а также обладает болеутоляющим действием и повышает сопротивляемость организма к инфекциям.

Судьба пыли в организме

Не вся пыль, попадающая в дыхательные пути, достигает легких: часть ее задерживается в верхних дыхательных путях, в первую очередь в полости носа. Волоски слизистой оболочки носа, извилистые ходы, лип­кая слизь, покрывающая оболочку, мерцательный эпителий слизистой носа являются отличными механизмами, задерживающими пылевые частицы. Значительная часть задержанной пыли - выделяется обратно при чихании и кашле. 50% пыли достигает легких и там задерживается.

В легких происходит процесс фагоцитоза пылевых частиц, в первую очередь клетками легочного эпителия. Фагоцитоз, является защитной функцией организма и способствует очищению лег­ких от пыли. Клетки, поглотившие пылевые частицы, так называемые пылевые клетки, стремятся удалить пыль из легких различными путя­ми. Один из путей — удаление пыли вместе с мокротой, другой — уда­ление пыли по лимфатическим путям легкого в бронхиальные железы и по направлению к плевре, где, скапливаясь, пыль вызывает пролиферативную реакцию. Активность фагоцитоза различных видов пыли неодинакова.

Хорошо фагоцитирующаяся пыль, как, например, угольная, сравнительно легко удаляется из легких, в то время как кварцевая пыль, несмотря на высокую активность фагоцитоза, вследствие быстрой гибели фагоцитов удаляется медленно и накапливается в легких. Пыль, транспортируемая пылевыми клетками по лимфатическим путям, может задерживаться в местах бифуркации и изгибов лимфатических сосудов, закупоривать их, вызывать лимфостаз, способствующий в дальнейшем развитию соединительной ткани.Часть пылевых клеток под влиянием токсического действия пыли (кварца) разрушается, пылевые частицы в этом случае задерживаются в альвеолах, внедряются в ткань межальвеолярных перегородок и вызы­вают пролиферативную клеточную реакцию. В дальнейшем в зависимости от агрессивности пыли процессы мо­гут протекать в двух направлениях: развитие специфических процес­сов— образование патологической соединительной ткани, т. е. фиброза легких и развитие неспецифических патологических процессов, например воспаление легких, туберкулез легких, рак легких и др.

43. Специфические заболевания легких и других органов под влиянием производственной пыли. Классификация пневмокониозов.

Основными пылевыми профзаболеваниями являются пневмокониозы. Пневмокониоз (от греч. pneumon – легкое, conia – пыль) - заболевания легких, сопровождающиеся хроническим диффузным пневмонитом, развитием фиброза легких.

В зависимости от химического состава пыли различают следующие группы профессиональных заболеваний легких:

· силикоз – пневмокониоз, развивающийся при воздействии пыли, содержащей диоксид кремния (SiO2);


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.134 с.