Мозаика зрительных предпочтений — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Мозаика зрительных предпочтений

2022-08-21 62
Мозаика зрительных предпочтений 0.00 из 5.00 0 оценок
Заказать работу

 

Функциональные свойства области «буквенной кассы» тоже стабильны. На рис. 2.5 приведены снимки мозга семи человек, демонстрирующие избирательное возбуждение в ответ на письменные слова и отсутствие активности в ответ на их устную форму[125]. Это явление, отмеченное еще Стивом Питерсеном и его коллегами в исследовании 1998 года, свидетельствует о том, что в большинстве случаев «буквенная касса» не реагирует на устную речь. Следовательно, можно считать, что ее «интересует» только письменное слово. Впрочем, из этого правила есть одно исключение – мысленное проговаривание слов по буквам. Например, испытуемых можно спросить, содержит ли произнесенное слово нисходящую букву, такую как «р» или «у» (нисходящие буквы – это буквы, элементы которых выходят за нижнюю границу строки). В таких случаях в области «буквенной кассы» регистрируется умеренная активность – человек мысленно представляет, как это слово пишется[126]. То же самое происходит, когда носителей японского языка просят представить написание слова в уме[127]. Наконец, если предложить испытуемым сосредоточиться на разнице между двумя похожими словами, например «дом» и «том», область «буквенной кассы» тоже вспыхнет – вероятно, потому, что доступ к буквам «д» и «т» облегчает различение звуков[128]. Очевидно, все эти задачи требуют нисходящего доступа от звуков речи к буквам. В таких случаях сигнал, вероятно, движется по маршруту, противоположному тому, который обычно используется при чтении. За исключением этих специфических ситуаций, область «буквенной кассы» обычно реагирует лишь на письменные слова и игнорирует устные.

 

Рис. 2.5. Активацию области зрительной формы слова можно наблюдать у любого грамотного человека. Участники эксперимента видели или слышали пары слов, после чего должны были определить, разные это слова или нет. У семи испытуемых письменные слова активировали левую затылочно‑височную область («буквенную кассу» мозга). Активность регистрировалась в одном и том же месте, несмотря на вариативность моделей складчатости коры. Обратите внимание, что произнесенные слова не вызывали никакой реакции в этой зоне (по материалам статьи Dehaene et al., 2002). Использовано с разрешения Wolters Kluwer/Lippincott, Williams & Wilkins.

 

Рис. 2.6. Нижняя часть поверхности мозга усеяна специальными зрительными детекторами. Каждая область коры в основном реагирует только на определенную категорию объектов. Паттерн предпочтений наблюдается в одном и том же порядке у всех людей. Чтение всегда активирует область, расположенную между пиковыми реакциями на лица и предметы (по материалам статьи Ishai et al., 2000; Puce et al., 1996). Адаптировано с разрешения Алюмиты Ишай.

 

Таким образом, все данные указывают на то, что эта область отвечает за визуальный анализ. Вопрос в том, насколько она универсальна. «Буквенная касса» обрабатывает любой зрительный объект? Или же она специализируется только на чтении? Как ни странно, наш мозг является сторонником разделения труда: все визуальные объекты делятся на категории, каждую из которых обрабатывает определенный участок коры. Часть этой области предпочитает письмо широкому спектру других зрительных стимулов, и это обнаруживается у всех людей в определенном месте. Распознавание домов и пейзажей преимущественно задействует зоны, близкие к срединной линии мозга. Если двигаться в сторону, к латеральным (боковым) отделам, реакция на написанные слова сменяется откликом на лица. На краю мозга расположен сектор, в основном откликающийся на предметы и инструменты (рис. 2.6)[129].

Нейрорадиолог Эйна Пьюс стала первым ученым, использовавшим чувствительность и высокое пространственное разрешение фМРТ для изучения зрительной «мозаики» у разных людей. Так, во время сканирования она показывала испытуемым лица и бессмысленные наборы букв, такие как «XGFST». В обоих случаях активировались две небольшие специализированные области: лица преимущественно стимулировали нижнюю часть веретенообразной извилины, в то время как слова возбуждали соседний участок в затылочно‑височной борозде (рис. 2.7)[130]. Это неожиданный результат. Если каждая область коры действительно отвечает за определенную категорию, разделение труда должно носить бессистемный характер и случайным образом меняться от одного человека к другому. Но это не так – овладение чтением, по всей видимости, является крайне стабильным процессом, который систематически направляет информацию в одни и те же «горячие» точки мозга.

С другой стороны, степень специализации зрительной коры не следует переоценивать. Хотя некоторые участки, визуализируемые в рамках грубой пространственной шкалы фМРТ, демонстрируют выраженное предпочтение стимулов определенных категорий, они реагируют не только на них. Как впервые показал Джим Хаксби и его коллеги из Национального института здоровья, наша кора вовсе не разделена на отдельные зоны с четкими границами. Скорее зрительные области, обрабатывающие разные сигналы, накладываются друг на друга[131]. Зоны, которые наиболее интенсивно реагируют на лица, откликаются и на другие категории объектов – например, слова, инструменты или животных. Однако нельзя забывать, что размер вокселя (трехмерного пикселя), визуализируемого с помощью фМРТ, составляет два‑три миллиметра с каждой стороны. По клеточным меркам это огромная площадь, охватывающая до миллиона нейронов и даже больше. По этой причине неудивительно, что не всем этим клеткам свойственны одинаковые предпочтения. При увеличении пространственного разрешения до одного миллиметра категориальная избирательность становится очевидной: некоторые участки коры реагируют исключительно на одну группу объектов, например на лица[132]. В ходе экспериментов над животными ученым удалось записать активность отдельных нейронов внутри такого участка. Данные показывают, что подавляющее большинство из них действительно откликаются на лица[133].

 

Рис. 2.7. Визуализация мозга показывает области зрительной коры, специализирующиеся на распознавании лиц и буквенных цепочек. Показ чередующихся изображений лиц и бессмысленных наборов букв активирует разные участки левой вентральной зрительной коры. У пяти испытуемых эти области организованы одинаково – реакция на буквы всегда более латеральна, чем на лица (по материалам статьи Puce et al., 1996). Адаптировано с разрешения Journal of Neuroscience.

 

Обобщив результаты всех этих исследований, мы получим мозаику нейронов зрительной коры, каждый из которых специализируется на определенной категории форм. Нейроны с похожими предпочтениями склонны группироваться вместе, образуя так называемые кластеры. Поскольку зачастую они перемешаны с другими клетками, возникают зоны частичных предпочтений. Один участок реагирует на лица, другой – на предметы, третий – на цифры или буквы. Чтобы хоть как‑то обозначить эти зоны, ученые называют их «область лица» или «область формы слова». Хотя в подобных ярлыках, безусловно, есть своя польза, помните: все, что мы видим на самом деле, – это пиковые реакции на лица или слова, а не сами нейроны. Пики, систематически обнаруживаемые в одном и том же месте у разных испытуемых, говорят одно, но на заднем плане всегда находятся и другие менее заметные вершины. Не исключено, что они играют не менее важную роль в процессе чтения или распознавания лиц. В конечном счете каждая закодированная визуальная категория представляет собой ландшафт из долин и холмов, который покрывает нижнюю поверхность двух полушарий и свидетельствует о невероятной сложности нашей системы зрения.

 

Насколько быстро мы читаем

 

Слова и лица предпочитают не только разные участки коры, но и разные полушария. В распознавании слов доминирующую роль играет левое полушарие, а лиц – правое. Хотя на начальных стадиях оба полушария стимулируются одинаково, через несколько десятков миллисекунд слова перенаправляются влево, а лица – вправо. Такая латерализация является еще одной неизменной и существенной особенностью чтения.

Если бы мы полагались только на ПЭТ и фМРТ, скорость этого процесса сортировки навсегда осталась бы для нас тайной. Оба метода, основанные на измерении кровотока и оксигенации, слишком медленны для визуализации мозговой активности в реальном времени. При активации коры кровоток усиливается только через несколько секунд. Подобно астроному, анализирующему свет, излученный звездами в далеком прошлом, фМРТ позволяет видеть мозговую активность, возникшую несколько секунд назад. Такие задержки сильно ограничивают наблюдения за работой мозга.

К счастью, другие методы визуализации – в том числе электро‑ и магнитоэнцефалография – позволяют отслеживать активность мозга в реальном времени. Основной принцип можно сформулировать так: активные нейроны генерируют электрические и магнитные импульсы, которые могут быть мгновенно зафиксированы, причем даже на некотором расстоянии от самого нейрона. Благодаря дендритам нейроны собирают скачкообразные изменения напряжения, полученные от тысяч других нервных клеток. Когда множество нейронов, расположенных перпендикулярно поверхности коры, одновременно получают электрические сигналы, суммарного тока оказывается достаточно, чтобы его можно было зафиксировать снаружи черепа. Эти измерения и составляют всем известную электроэнцефалограмму (ЭЭГ).

Впервые метод ЭЭГ для изучения человеческого мозга применил Ганс Бергер в 1924 году. Он заключается в измерении напряжения, создаваемого на поверхности черепа нервными токами. Поскольку этот показатель очень мал и составляет около одной миллионной вольта, требуется чувствительный усилитель. В 1968 году Дэвид Коэн и его коллеги из Массачусетского технологического института разработали другой, более надежный, метод – магнитоэнцефалографию, или МЭГ. МЭГ обнаруживает малейшие изменения в магнитных полях, создаваемых нервными токами. Устройство должно быть особенно чувствительным, так как магнитные сигналы мозга чрезвычайно слабы и составляют порядка нескольких фемтотесл, что в миллиард раз меньше магнитного поля Земли. Хотя это весьма дорогостоящий метод исследования, его пространственная точность, намного превосходящая точность ЭЭГ, делает его бесценным для визуализации мозговой активности в режиме реального времени.

 

Рис. 2.8. Магнитоэнцефалография – это метод, позволяющий отслеживать мозговую активность миллисекунда за миллисекундой. В течение примерно 100 миллисекунд после появления изображения буквенной цепочки или лица активируются схожие паттерны активности в затылочной области. Спустя 150 миллисекунд слова направляются в «буквенную кассу» в левом полушарии, а лица возбуждают симметричную область в правой части мозга (по материалам статьи Tarkiainen, Cornelissen, & Salmelin, 2002). Адаптировано с разрешения Oxford University Press.

 

Как ЭЭГ, так и МЭГ обеспечивают отличное временное разрешение: передача электромагнитных сигналов мозга к регистрирующим их датчикам происходит практически мгновенно. В результате можно получить целую серию снимков работающего мозга. Что касается чтения, ЭЭГ и МЭГ позволили измерить необычайную скорость, с которой мозг сортирует зрительные образы. Антти Таркиайнен и его коллеги из Хельсинкского университета использовали МЭГ для измерения магнитной активности мозга испытуемых во время разглядывания лиц и слов (рис. 2.8)[134]. Полученные ими данные свидетельствуют о двух четких стадиях зрительной обработки в коре. На первой стадии, наблюдаемой примерно через 100 миллисекунд после попадания изображения на сетчатку, эти два типа стимулов неотличимы друг от друга: слова и лица активируют одни и те же зоны затылочного полюса. Судя по всему, эти области выполняют первичный анализ и, вероятно, извлекают из входного изображения элементарные линии, кривые и поверхности. На этом этапе мозг не распознает тип стимула, с которым он столкнулся. Спустя 50 миллисекунд запускается процесс сортировки. Теперь слова вызывают интенсивную реакцию в левом полушарии. Для лиц происходит прямо противоположное: магнитный потенциал явно преобладает на правой стороне мозга.

Первые стадии зрительной обработки можно записать и с помощью ЭЭГ. Они представляют собой отрицательное напряжение, которое регистрируется на затылке примерно через 170 миллисекунд. При взгляде на слова его амплитуда гораздо больше в левом полушарии, чем в правом. Компьютерная реконструкция источника этих электромагнитных волн указывает на заднюю часть затылочно‑височной извилины. Именно в этом месте мы обнаружили «буквенную кассу» с помощью функциональной МРТ. Таким образом, оба метода нейровизуализации подтверждают наше предположение о том, что эта область играет важную и специфическую роль на первых этапах зрительного распознавания слов. Затем в игру вступают специализированные системы. Предположительно, чтение и распознавание лиц предъявляют к нашей зрительной системе настолько разные требования, что общих алгоритмов обработки изображений в таких случаях недостаточно.

 

Электроды в мозге

 

Измерение мозговой активности на внешней поверхности черепа – это прекрасно, но нейробиологи всегда мечтали проникнуть в сам мозг. Возможно ли такое исследование с этической точки зрения? Более инвазивный метод, предполагающий прямой электрический контакт с поверхностью мозга, существует давно и обеспечивает уникальную возможность подробно изучить специализацию системы, отвечающей за чтение. В этом случае электроды помещаются непосредственно на кору или глубоко в ткань головного мозга. Конечно, такой метод можно использовать только с определенными пациентами. Он никогда не применяется без веских клинических показаний и требует информированного согласия больного. Его основная цель – изучение эпилепсии. Некоторые пациенты страдают частыми приступами и не восприимчивы к противосудорожным препаратам. Их единственная надежда на улучшение своего состояния – удаление эпилептического очага (места, где зарождаются приступы). В большинстве случаев хирургическое вмешательство приводит к избавлению от них. Однако перед операцией необходимо точно определить область, подлежащую удалению. Задача состоит в том, чтобы полностью извлечь пораженные ткани, но сохранить примыкающие к ним здоровые участки.

Успешность хирургического вмешательства зависит от точности определения локализации участка, в котором зарождается эпилептическая активность. Для этого за одну или две недели перед операцией в предполагаемую область вживляют несколько десятков электродов. Непосредственный контакт с корой обеспечивает высокоточный мониторинг электрических сигналов. В современных клиниках эти сигналы оцифровываются непрерывно, и за пациентами наблюдают днем и ночью. В результате даже малейший намек на приближение приступа можно реконструировать и проследить до той области, где он возник. В промежутках между двумя припадками электроды регистрируют сигналы, по большей части возникающие в здоровой ткани. С согласия пациента и в сотрудничестве с ним они могут быть использованы для изучения реакций мозга на внешние стимулы, такие как слова или лица.

В 1990‑х годах неврологи Труэтт Эллисон, Грегори Маккарти и их коллеги из Йельского университета инициировали исследовательскую программу, в рамках которой были собраны записи внутричерепных сигналов более 100 человек[135]. Суть хирургической процедуры состояла в обертывании височных и затылочных долей полосками электродов, помещенных под защитную оболочку мозга для непосредственного контакта с поверхностью коры (рис. 2.9). Расположенные через каждые 5–10 миллиметров, эти датчики позволили получить более четкое представление о последовательных стадиях процесса чтения и подтвердили невероятную скорость нашей зрительной системы. Примерно через 180 миллисекунд после появления изображения на сетчатке глаза некоторые электроды, обращенные к вентральной поверхности затылочной и височной долей, регистрировали высокоамплитудные отрицательные волны. Как и следовало ожидать, при возникновении слов эти сигналы в основном исходили из левого полушария, а при появлении лиц – из правого.

 

Рис. 2.9. Электроды, помещенные непосредственно на поверхность мозга больных эпилепсией, позволяют визуализировать специализацию коры с исключительной пространственной и временной точностью. Спустя 150–200 миллисекунд после возникновения определенной категории стимулов электрический сигнал на некоторых электродах внезапно изменяется. Одни зоны предпочитают лица, другие – письменные слова. Объединив в стандартном анатомическом пространстве данные большого количества пациентов, мы увидим, что лица преимущественно задействуют правое полушарие, а слова – левое (по материалам статьи Allison et al., 1999). Адаптировано с разрешения Oxford University Press и Cerebral Cortex.

 

Вопросы вызывала крайняя пространственная избирательность реакции. Один электрод мог интенсивно реагировать на слова, в то время как его соседи, находившиеся всего в нескольких миллиметрах, не проявляли никакой активности. Что еще удивительнее, один и тот же электрод мог весьма энергично откликаться на слова, но игнорировать другие категории, например лица, предметы или абстрактные фигуры. Это наблюдение ясно свидетельствовало о существовании микротерриторий, посвященных исключительно словам.

Таким образом, результаты внутричерепной регистрации сигналов хорошо согласуются с данными, полученными другими способами, включая вскрытие (как в случае с месье К.), ПЭТ‑сканирование, функциональную МРТ и методы электромагнитной визуализации. Вентральная поверхность любого человеческого мозга содержит упорядоченный набор устройств зрительного распознавания. Они настроены на различные категории изображений и расположены в определенном месте у всех людей. Так, область «буквенной кассы» всегда зажата между зонами, реагирующими на лица и предметы. Такое систематичное устройство мозаики зрительного мозга требует объяснения.

Что касается обработки лиц, Нэнси Кэнуишер, профессор когнитивной нейробиологии Массачусетского технологического института, предложила простую эволюционную гипотезу. У приматов, ведущих активную социальную жизнь, область коры, отвечающая за распознавание лиц, вероятно, развилась с течением времени[136]. Хотя в этом случае подобный дарвиновский подход кажется не столь маловероятным, никакое эволюционное влияние не может объяснить существование участков коры, предназначенных для букв и слов. Каким же образом мозг примата сумел предвидеть изобретение письменности и зарезервировать для нее целую область?

Прежде чем приподнять завесу тайны над этим парадоксом, давайте разберемся, чем на самом деле занимается «буквенная касса». Отражает ли ее активность подлинную специализацию на словах, или мы видим лишь общую реакцию на линии и кривые, которые образуют буквы? Поскольку непосредственное сравнение слов и лиц не дает однозначного ответа на этот вопрос, необходимо более пристально взглянуть на то, как именно мозг решает проблему инвариантного распознавания слов.

 

Позиционная инвариантность

 

Как я уже упоминал выше, зрительная система обладает удивительной способностью к пространственной инвариантности. Опытный читатель может распознавать слова независимо от их расположения (при условии, конечно, что они не выходят за пределы ограниченного разрешения сетчатки). Но какая область отвечает за эту форму инвариантности восприятия? «Буквенная касса»? Эксперименты, проведенные мной и Лораном Коэном, показывают, что именно она[137]. Мы просили испытуемых непрерывно смотреть на маленькое перекрестье на мониторе, справа и слева от которого появлялись короткие слова. Как известно, зрительная информация поступает в мозг крест‑накрест: слова, появляющиеся на левой стороне экрана, проецируются на правую половину сетчатки и передаются в зрительные центры правого полушария, и наоборот. В нашем эксперименте входящая информация действительно поступала либо в одно, либо в другое полушарие. Функциональная МРТ показала, что в затылочных областях, особенно в зоне V4, активация ограничивалась левым полушарием, если слова появлялись справа, и правым полушарием, если они возникали слева. Это наблюдение подтвердила электроэнцефалография: в течение примерно 160 миллисекунд после предъявления стимульного слова потенциалы мозга регистрировались только на противоположной стороне головы (рис. 2.10).

 

Рис. 2.10. Независимо от расположения на сетчатке, все слова перенаправляются к «буквенной кассе» мозга в левой затылочно‑височной коре. В этом эксперименте испытуемые смотрели на перекрестье в центре монитора, слева или справа от которого появлялись короткие слова. Примерно через 150–170 миллисекунд после возникновения слова на противоположной стороне головы возникала первая отрицательная волна, свидетельствующая об активации зрительной зоны V4, расположенной в задней части мозга. На этом этапе зрительная информация оставалась ограниченной одним полушарием. Однако на 180–200 миллисекунде на левой стороне мозга регистрировался второй отрицательный сигнал, причем возникал он вне зависимости от того, в какой половине зрительного поля появлялось стимульное слово. МРТ подтвердила близость активации к левой стороне зрительной системы (по материалам статьи Cohen et al., 2000). Адаптировано с разрешения Oxford University Press.

 

Затем паттерн мозговой активности резко менялся. Менее чем за 40 миллисекунд вся активность переключалась на левое полушарие, причем наиболее впечатляющая трансформация наблюдалась для слов, возникающих в левой половине зрительного поля. Примерно на 200‑й миллисекунде буквенные цепочки, первоначально попавшие в правое полушарие, внезапно переносились в левое и обрабатывались как слова, появляющиеся справа.

Функциональная МРТ помогла точно установить место, где зрительная информация передавалась из одного полушария в другое. Мы обнаружили, что сигналы от левой и правой половин сетчатки сходились в левой затылочно‑височной области, в том самом месте «буквенной кассы», повреждения которой приводили к нарушениям чтения. Активация этой области в левом полушарии характеризовалась одинаковыми пространственными контурами и интенсивностью независимо от того, где были представлены слова: слева или справа от центральной ямки. Иначе говоря, пространственная инвариантность начиналась в «буквенной кассе». Другие эксперименты подтвердили, что именно в этой области впервые распознается повторение письменного слова сначала на одной стороне экрана, а затем на другой. Это явный признак пространственной инвариантности[138].

Для обеспечения инвариантности информация, поступающая от обеих половин сетчатки, в результате должна попасть в левое полушарие. Перенос данных осуществляется благодаря нервным связям, соединяющим зрительные области правого полушария с зоной левой «буквенной кассы». Подавляющее большинство таких связей проходит через мозолистое тело – большой пучок нервных волокон, связывающих два полушария. Из подобной структуры вытекает довольно неожиданный прогноз: если в результате травмы или инсульта нарушается передача информации через мозолистое тело, то проблемы с чтением должны ограничиваться левой половиной зрительного поля. Слова, представленные слева, по‑прежнему будут активировать зрительные области в правом полушарии, но информация о них не сможет добраться до речевых центров левого полушария – она останется заблокированной справа. Следовательно, такой человек без труда сможет прочесть слова, которые появляются в правой части экрана, но не те, что возникают в его противоположной части.

Этот любопытный синдром «полуалексии» мы с Лораном Коэном взяли отнюдь не с потолка. Мы наблюдали это странное явление у двух пациентов с повреждениями задней части мозолистого тела[139]. На рис. 2.11 показана мозговая активность одного из них (больного А. К.), измеренная с помощью функциональной МРТ. Слова, которые появлялись справа, молодой человек читал быстро и легко, а те, что возникали слева, – с большим трудом. Он утверждал, что видит не само слово, а лишь неясные очертания. Чтобы их идентифицировать, ему требовалось более двух секунд. И действительно, МРТ показала, что слова, представленные слева, не вызывали активности в области «буквенной кассы», зато провоцировали повышенное возбуждение в других областях, таких как префронтальная кора. По всей видимости, это свидетельствовало о напряженном поиске правильного «ответа».

 

Рис. 2.11. Зрительная инвариантность частично опирается на работу мозолистого тела – крупного пучка волокон, соединяющего два полушария головного мозга. Слово, представленное слева от точки фиксации, сначала обрабатывается зрительными областями в правом полушарии, а затем передается в левое. Как показывает диффузионная МРТ, большинство волокон, связывающих эти области, проходят через мозолистое тело (вверху справа). У одного из наших пациентов (А. К.) этот тракт был поврежден. В результате межполушарная передача была прервана, и молодой человек утратил способность читать слова, возникающие слева (по материалам статьи Molko et al., 2002). Адаптировано с разрешения Oxford University Press и The Journal of Cognitive Neuroscience.

 

Вкратце, А. К. потерял анатомический путь, играющий важную роль в процессе чтения. Этот маршрут, проходящий через мозолистое тело, помогает буквам, попадающим в правое полушарие, перебраться в область «буквенной кассы» левого полушария. Однако не все так просто. Буквы, оказавшиеся в правой половине зрительного поля, имеют явное преимущество: они сразу поступают в левое полушарие, прямо в «буквенную кассу». Буквы, которые возникают слева, сначала попадают в правое полушарие. Чтобы добраться до «буквенной кассы», им нужно преодолеть несколько сантиметров проводящего пути. В результате даже здоровые люди всегда читают немного медленнее и чаще допускают ошибки, когда буквенные цепочки появляются слева от точки фиксации. Что касается распознавания слов, увеличенная длина передачи и, самое главное, сокращенный объем информации, передаваемой через мозолистое тело, дорого обходятся. Так, в человеческом мозге позиционная инвариантность является неполной: не все зоны сетчатки одинаково эффективны при чтении. Как и А. К., любой человек лучше видит слова справа, чем слева [140].

Другой метод визуализации – так называемая диффузионная магнитно‑резонансная томография – позволил увидеть тот самый поврежденный пучок волокон, из‑за которого А. К. утратил способность читать. В своих экспериментах мы использовали модифицированную МРТ. Она помогает определить направление нервных волокон в живом человеческом мозге и работает следующим образом. Как известно, молекулы воды пребывают в постоянном хаотичном броуновском движении. Налейте себе чашечку горячего кофе. Именно броуновское движение заставляет каплю молока распределяться по всему напитку. В нашем организме молекулы воды перемещаются так же. Хитрый трюк с магнитным резонансом позволяет измерить эту диффузию[141]. Условно говоря, он состоит в двукратном намагничивании мозга в противоположных направлениях. Для неподвижных молекул намагниченность взаимно гасится, и суммарный эффект равен нулю. Движущиеся молекулы, наоборот, создают измеримый сигнал, пропорциональный скорости движения в измеряемом направлении.

Что произойдет, если измерить диффузию в разных направлениях? В жидкостях это не имеет значения – в кофе капля молока рассеивается одинаково быстро во все стороны. Однако в биологических тканях движение ограничивают клеточные мембраны. В частности, белое вещество мозга в основном состоит из пучков нервных волокон, которые действуют как трубки: молекулы воды могут свободно перемещаться вдоль их главной оси, но не поперек. В любой точке мозга направление максимальной диффузии воды подобно стрелке, указывающей на ось главных проводящих путей. Если все локальные указатели объединить с помощью мощной компьютерной программы, можно получить трехмерное изображение главных нейронных маршрутов. Это напоминает фотографирование задних фар автомобиля с очень медленной выдержкой. Именно эти приборы всегда указывают направление, в котором автомобиль движется по шоссе.

Благодаря диффузионной МРТ ученые могут получать точные данные о коннективности (связности) человеческого мозга. До изобретения этого метода отследить нервные связи было крайне трудно. Возраст единственной правдоподобной карты, имеющейся в нашем распоряжении, насчитывает более 100 лет. И составил ее… Жозефа Жюль Дежерин. Только он был достаточно квалифицирован в анатомических исследованиях и весьма настойчив, чтобы по крупицам собирать информацию в ходе вскрытий.

Сканирование мозга А. К. сразу же выявило аномалию[142]. Задняя часть его мозолистого тела и большой сегмент примыкающего к нему белого вещества не демонстрировали стандартную направленность диффузии воды. Сигнал утратил избирательность, которая обычно обнаруживается в этом месте мозга и указывает на присутствие крупного проводящего пути. Волокна, соединяющие два полушария, очевидно, были повреждены, и молекулы воды перемещались более свободно. Такая аномальная диффузия позволила проследить ход поврежденного маршрута даже в тех областях, где стандартная анатомическая МРТ выглядела нормально. Сопоставив эти снимки со снимками здорового мозга, мы получили изображение поврежденного пучка волокон (рис. 2.11). Как и следовало ожидать, нарушение охватывало зону от зрительных областей правой затылочной коры до участка, непосредственно примыкающего к «буквенной кассе», что объясняло неуверенное чтение А. К. слов, находящихся слева[143].

Все эти примеры – наглядное доказательство силы современных методов визуализации. В лаборатории мы обычно визуализируем не только анатомию мозга, но и активность в определенных областях, ее продолжительность и даже направление нервных волокон, которые эти зоны соединяют. Диффузионная МРТ стала незаменимым инструментом в клинической неврологии. Она используется для диагностики инсультов и ряда других патологий белого вещества, таких как рассеянный склероз. Однако информация, которую она предоставляет, сугубо анатомическая. Даже если мы видим связь, МРТ не дает нам никакого представления о том, как и когда она используется. Но так будет не всегда. Последние перспективные исследования показывают, что информация о мозговой активности присутствует и в диффузионном сигнале[144]. Прогресс в этой сфере настолько стремителен, что мы можем рассчитывать на новые открытия каждый год. Вероятно, уже в самом ближайшем будущем достижения в области визуализации позволят за считаные минуты составлять карты всех нейронных цепей, отвечающих за чтение, у любого человека.

 

Подпороговое чтение

 

Как мы только что убедились, область «буквенной кассы» распознает слова независимо от того, где они появляются. Это первая область мозга, для которой положение слова не имеет значения. Впрочем, инвариантность относительно пространственного расположения является лишь одним из фундаментальных свойств эффективного распознавания слов. Форма знаков тоже варьируется. Опытный читатель без труда идентифицирует, что «А» и «а» – это одна и та же буква в разных регистрах, и понимает, что СмЕсЬ пРоПиСнЫх И сТрОчНыХ бУкВ не меняет значения слова. Но как именно реализуется инвариантность относительно регистра? Задействует ли мозг те же области, которые отвечают за пространственную инвариантность? Происходят ли эти два процесса одновременно, или они требуют серии последовательных операций, которые опираются на разные механизмы коры головного мозга?

Чтобы ответить на эти вопросы, Тэд Полк и Марта Фарах провели простой эксперимент[145]. Во время фМРТ испытуемые читали слова, напечатанные в смешанном регистре, например «ОтЕлЬ». Измерив мозговую активность, исследователи обнаружили, что эти стимулы вызывали почти такую же реакцию, как и слова, напечатанные в одном регистре. В частности, профиль активности в области «буквенной кассы», даже при предъявлении таких причудливых стимулов, как «СлОнЕнОк»[146], оставался совершенно нормальным. В результате Полк и Фарах заключили, что эта область содержит абстрактную репрезентацию букв и слов, а ее нейроны нечувствительны к регистру.

Разумеется, эти выводы не окончательные. Относительно низкое пространственное разрешение изображений мозга не позволяет увидеть, какие именно нейроны реагируют на «ОтЕлЬ», «ОТЕЛЬ» и «отель»: одни и те же или разные. Совокупная активность, вызванная этими буквенными цепочками, может быть одинаковой, а задействованные нейроны – разными. Следовательно, идентичный паттерн активации не является доказательством того, что инвариантность относительно регистра реализуется именно в этом месте.

Эта проблема могла бы показаться неразрешимой, если бы не хитрая методика, позволяющая измерить реакцию мозга на пары слов, возникающих последовательно[147]. В каждом испытании участникам показывают два стимула друг за другом. Идея состоит в том, чтобы сравнить совокупную активность, вызванную одним и тем же словом, напечатанным в верхнем и нижнем регистре (например, «отель», за которым следует «ОТЕЛЬ»), и двумя разными словами (например, «радио», за которым следует «ОТЕЛЬ»). Из результатов опытов над животными мы знаем, что нейроны очень чувствительны к повторам. Они быстро адаптируются к возобновляющимся стимулам и при предъявлении во второй раз реагируют не так интенсивно. Новый образ, напротив, провоцирует мгновенную вспышку активности. Таким образом, сигнал МРТ, который сначала гаснет, а затем усиливается, косвенно сообщает нам, что нейроны заметили повтор стимула и его последующее изменение. Манипулируя формой объекта, мы можем установить, что считается повторением для данной конкретной области. Например, определяет ли она «отель» и «ОТЕЛЬ» как одно слово или как разные?

В идеале испытуемые не должны знать, что слова повторяются. В противном случае уровень внимания существенно падает. Поскольку это ведет к ослаблению сигнала МРТ, который распространяется на связанные со вниманием области, невозможно определить, что именно он отражает: локальную перцептивную инвариантность или глобальное изменение общего состояния внимания.

В своей экспериментальной работе я всеми силами старался предотвратить сознательное восприятие повторяющихся слов. Первое слово в каждой паре всегда появляется на очень короткий срок, составляющий не более 29 миллисекунд (чуть меньше продолжительности одного кинокадра). Это стандартные условия для подпорогового восприятия. Первое слово невидимо: оно зажато между двумя бессмысленными наборами геометрических фигур. Вместо него испытуемые воспринимают лишь краткое мерцание, а затем следует второе слово – единственное, которое они видят сознательно. Контрольные эксперименты подтверждают отсутствие какой бы то ни было информации о скрытом слове.

Удивительно, но замаскированное слово активирует часть нейронных цепей, отвечающих за чтение. В частности, область «буквенной кассы» реагирует на повторы слов – в этом случае ее активность уменьшается (рис. 2.12). Примечательно, что реакция ее одинакова независимо от того, в каком регистре напечатаны слова: в одном («ОТЕЛЬ» – «ОТЕЛЬ») или в разных («отель» – «ОТЕЛЬ»). В других областях мозга такой специфический эффект не наблюдается. Например, активность отделов затылочной доли, вовлеченных в низкоуровневую зрительную обраб


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.