Тонкостенные и ребристые купола-оболочки из древесины и пластмасс. — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Тонкостенные и ребристые купола-оболочки из древесины и пластмасс.

2021-04-19 115
Тонкостенные и ребристые купола-оболочки из древесины и пластмасс. 0.00 из 5.00 0 оценок
Заказать работу

По характеру работы к этой конструктивной схеме ближе всего относятся пластмассовые гладкие купола-оболочки однослойные, двух- и трехслойные. Однослой­ные пластмассовые купола изготовляют из полиметилме-такрилата (органическое стекло), полиэфирного стекло­пластика (чаше всего светопрозрачного) и пенопласта (пенополистирол и др.). Трехслойные купола-оболочки общей толщиной от 15 до 50 мм имеют стеклопластико-вые обшивки толщиной до 3 мм и средний слой из пено-полистирола, пенополиуретана, пенополивинилхлорида, пенофенопласта, сотопласта и просто воздушной про­слойки. Двухслойные оболочки состоят из наружного стеклопластиковсго слоя и внутреннего пенопластового.

Диаметр и толщина однослойных куполов из полиме-тилметакрилата соответственно достигают 10 м и 20 мм; из стеклопластика—9 м и 6 мм; из пенопласта—24 м и 200 мм. Трехслойные купола возводят диаметром до 25 м с общей толщиной оболочки до 50 мм.

Параметры двухслойных куполов аналогичны одно­слойным стеклопластиковым, так как внутренний пено­пластовый слой в основном выполняет функцию утепли­теля.

Интересным примером трехслойного пластмассового купола является покрытие выставочного павильона в г. Бергамо (Италия) (рис. IX.25). Диаметр купола 25 м, высота подъема 9 м, общая толщина оболочки 50 мм емыми к ребрам болтами, глухарями или зубчатыми шпонками. При значительных поперечных усилиях при­меняют сварные металлические башмаки.

Верхнее кольцо изготовляют металлическим или де­ревянным. Деревянные кольца могут быть клееными или кружальными на гвоздях. Диаметр верхнего кольца при­нимают таким, чтобы к нему беспрепятственно примыка­ло требуемое количество меридианных ребер. Отверстие кольца часто используют как световой или аэрационный фонарь.

Нижнее опорное кольцо воспринимает распор мери­дианных ребер и работает на растяжение. Оно может быть железобетонным, деревянным или металлическим в зависимости от уровня опирания купола и вида ниж-нях опорных конструкций (железобетонные фундаменты, металлические или деревянные стойки и т. д.). Концы ребер должны быть заанкерены в опорном кольце, а по­следнее надежно соединено с нижележащими конструк­циями.

Кольцевые настилы воспринимают усилия, действую­щие в кольцевом направлении оболочки. В нижней части купола, где могут возникать растягивающие кольцевые усилия, кольцевой настил выполняют из двух слоев до­сок. Нижний укладывают непосредственно на меридиан­ные ребра, верхний — перекрывает стыки нижнего, сдви­гаясь относительно их на половину длины доски. Оба слоя прибивают гвоздями. Доски не выкружаливают и поэтому между ними образуются зазоры. Вместо досок можно применять склеенные по длине плети брусков. В этом случае настил может быть одинарным, стыки пле­тей располагаются вразбежку и соединяются гвоздями через меридианное ребро или смежные бруски. Толщину досок кольцевого настила принимают 19—25 мм. В верх­ней части купола, где действуют сжимающие кольцевые усилия, настил выполняют из одного слоя досок (брус­ков) толщиной, равной двойному нижнему кольцевому настилу.

Косой настил воспринимает сдвигающие усилия, ко­торые возникают при несимметричной нагрузке на купрл. Он состоит из одного слоя досок толщиной 16—25 мм, укладываемого сверху кольцевого настила от одного ме­ридианного ребра к другому, под углом около 45°, обра­зуя на поверхности купола елочку.

Купола-оболочки могут быть выполнены из крупно­панельных клеефанерных элементов, что значительно снижает трудоемкость возведения покрытия.

Деревянные тонкостенные купола-оболочки собирают с помощью лесов.

Ребристые купола — одна из первых конструктивных схем купольных покрытий, состоящая из отдельных, по­ставленных радиально плоскостных несущих криволи­нейных или прямолинейных ребер, опирающихся в верх­нее и нижнее опорные кольца или фундаменты (рис. IX.28). Ограждающая часть покрытия, уложенная по верхним граням ребер, образует поверхность купола. По­крытие состоит из дощатых щитов или настила по коль­цевым прогонам, клеефанерных или стеклопластиковых панелей.

Несущие меридианные деревянные ребра постоянно­го или переменного сечения могут быть выполнены в виде полуарок (поверхности положительной гауссовой кри­визны) или прямолинейных элементов (конические купо­ла) из клееной древесины, фанеры или досок со сплош­ной или сквозной стенкой на гвоздях, а иногда из ферм. Несущие ребра увеличивают жесткость купола, позволя­ют воспринимать сосредоточенные нагрузки от оборудо­вания, способствуют приданию оболочки проектной фор­мы при возведении и облегчают монтаж покрытия. Вы­соту поперечного сечения ребер принимают в пределах 1/50—1/75 диаметра купола. Ребра устанавливают по нижнему опорному кольцу с шагом 4,5—6 м. Для обес­печения устойчивости ребер из плоскости и повышения общей жесткости покрытия между двумя соседними реб­рами купола устанавливают связи. Количество пар ре­бер, соединенных связями, принимают не менее трех. Чаще всего ребра соединяют попарно по всему покры­тию.

Дощатый настил укладывают по прогонам в два слоя — продольный и косой.

Верхнее сжатое кольцо (круглое или многоугольное) в отличие от кольца тонкостенных куполов-оболочек проектируют более жестким, учитывая его работу на изгиб и кручение, так как два ребра, расположенные в одной диаметральной плоскости, работают как арочная конст­рукция, прерванная в коньковом шарнире кольцом. При большом диаметре верхнее кольцо для повышения его жесткости и устойчивости раскрепляют внутренними рас­порками. Нижнее опорное кольцо как в тонкостенных ку­полах может быть круглого или многоугольного очерта­ния из железобетона, металла или древесины. Соедине­ние ребер с верхним и нижним кольцами осуществляется шарнирно.

 

 

Требования, предъявляемые к клеям для несущих конструкций

Равнопрочность, монолитность и долговечность кле­евых соединений в деревянных конструкциях могут быть достигнуты только применением водостойких конструк­ционных клеев. Долговечность и надежность клеевого соединения зависят от устойчивости адгезионных свя­зей, вида клея, его качества, технологии склеивания, эк­сплуатационных условий и поверхностной обработки до­сок.

Клеевой шов должен обеспечивать прочность соеди­нения, не уступающую прочности древесины на скалы­вание вдоль волокон и на растяжение поперек волокон. Прочность клеевого шва, соответствующую прочности древесины на растяжение вдоль волокон, пока еще не удается получить, поэтому в растянутых стыках пло­щадь склеиваемых поверхностей приходится увеличи­вать примерно в 10 раз косой срезкой торца на ус или на зубчатый шип.

Плотность (беспустотность) контакта клеящего ве­щества со склеиваемыми поверхностями должна созда­ваться еще в вязкожидкой фазе конструкционного клея, заполняющего все углубления и шероховатости, благода­ря способности смачивать склеиваемую поверхность. Чем ровнее и чище остроганы склеиваемые поверхности и чем плотнее они прилегают одни к другим, тем полнее моно­литность склеивания, тем равномернее и тоньше клее­вой шов. Деревянная конструкция, монолитно склеенная из сухих тонких досок, обладает значительными преи­муществами перед брусом, вырезанным из цельного бревна, но для реализации этих преимуществ необходи­мо строгое соблюдение всех условий технологии инду­стриального производства клееных деревянных конст­рукций.

После отверждения конструкционного клея от сфор­мировавшегося клеевого шва требуется не только рав-иопрочность и монолитность, но и водостойкость, тепло­стойкость и биостойкость. При испытаниях разрушение опытных образцов клеевых соединений должно проис­ходить в основном по склеиваемой древесине, а не по клеевому шву (с разрушением внутренних, когезиоиных связей) и не в пограничном слое между клеевым швом и склеиваемым материалом (с разрушением погранич­ных, адгезионных связей).

Виды клеев. Клеевые содинения применялись давно, главным об­разом в столярных изделиях. В начале XX в. в Швей­царии, Швеции и Германии стали применять несу­щие деревянные конструкции, соединенные на казеино­вом клее. Некоторые из этих деревянных конструкций, надежно защищенные от увлажнения, сохранились до наших дней. Однако в полной мере удовлетворить тре­бованиям, предъявляемым к соединениям элементов не­сущих конструкций современных капитальных сооруже­ний, белковые клеи животного и тем более растительно­го происхождения не могли.

Решающее значение для современного индустриаль­ного производства клееных деревянных конструкций на новой технологической базе имеет развитие химии поли­мерных материалов и производства синтетических кле­ев. Синтетические полимерные материалы с запланиро­ванными свойствами позволяют обеспечить требуемые прочность и долговечность клеевых соединений. Поиск оптимального ассортимента конструкционных клеев. и соответствующих режимов поточного производства кле­еных конструкций продолжается, но уже сейчас имеется

набор синтетических клеев, которые позволяют соеди­нять деревянные строительные детали не только с дере­вом, но и с синтетическими полимерными материалами н даже с металлическими деталями.

В отличие от казеиновых и других белковых клеев синтетические конструкционные клеи образуют прочный водостойкий клеевой шов в результате реакции поли­меризации или поликонденсации. В настоящее время в основном применяют резорциновые, фенольно-резорци-новые, алкилрезорциповые, фенольные клеи. Согласно СНиП 11-25-80, выбор типа клея зависит от температур-но-влажностных условий, при которых будут эксплуа­тироваться клееные конструкции.

Эластичность и вязкость клеевого шва особенно важ­на при соединении деревянных элементов с металличес­кими, фанерными, пластмассовыми и другими конструк­ционными элементами, имеющими температурные, уса­дочные и упругие характеристики. Однако использование эластичных каучуковых клеев в напряженных соеди­нениях как правило недопустимо из-за недостаточной прочности таких соединений и чрезмерной ползучести их при длительном нагружении.

Чем суше и тоньше склеиваемые доски, тем меньше опасность образования в них трещин. Если усушечное коробление недосушенных досок произойдет еще до от­верждения клеевого шва, но после прекращения давле­ния пресса, то склеивание будет необратимо нарушено, хотя возможно, что этот брак обнаружится лишь позд­нее, когда трещина раскроется по клеевому шву.

Клеем на основе синтетических смол обрабатывают кромки фанерных листов. Толщину их выбирают в зави­симости от диаметра нагеля и из условий работы фане­ры на смятие в гнезде.

Последние располагают обычно так, чтобы направле­ние волокон наружных слоев фанеры совпадало с на­правлением волокон соединяемого элемента, в котором действуют большие усилия, или этот угол составлял 45°. Следует отметить недостаточную изученность вопроса применения фанерных узловых пластинок.

Развитие нагельных соединений с пластинками в уз­лах привело к появлению нагельных пластин. Одними из первых стали применяться для узловых соединений кон­струкций с одной или двумя ветвями нагельные пластин­ки системы Мениг. Пластинки этой систе­мы изготовляют из пенопласта толщиной 3 мм и слоя синтетической смолы, усиленной стекловолокном толщи­ной 2 мм. В этой пластинке закреплены сквозные обоюдо­острые нагели диаметром от 1,6 мм и длиной по каж­дую сторону пластинки от 25 мм и более. Толщина сое­диняемых деревянных элементов может достигать 80 мм..

Нагельные пластинки устанавливают между соединя­емыми деревянными элементами. При запрессовке слой пенопласта сжимается и служит контролем для равно­мерной запрессовки нагелей в оба соединяемых эле­мента.

По своей работе соединения на нагельных пластинках могут быть сравнены с работой гвоздевых соединений. Несущая способность соединений на пластинках типа «Мениг» составляет 0,75—1,5 Н на 1 мм2 контактной по­верхности.

 

 

10. ПНЕВМАТИЧЕСКИЕ СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ ПОКРЫТИИ. Пневматические строительные конструкции покрытий по характеру работы очень близки к пространственным.висячим и тентовым мембранам. Оболочки этих конст­рукций, изготовленные из тканых материалов, способны стабилизировать свою форму только при наличии пред­варительного напряжения. В отличие от тентовых мем­бран, где предварительное напряжение создается меха­ническим путем, пневматические конструкции реализуют предварительное напряжение вследствие разности давле­ния (избыточного или вакуума) в подоболочечном и ок­ружающем конструкцию пространстве.

Возникнув в конце сороковых годов нашего столетия благодаря успехам химии полимеров, пневматические конструкции сразу вступили в полосу своего бурного раз­вития, подготовленную высоким уровнем техники и тех­нической культуры производства.

Среди преимушеств пневматических конструкций сле­дует отметить малый собственный вес, высокую мобиль­ность, быстроту и простоту возведения, возможность пе­рекрытия больших пролетов, высокую степень заводской готовности и др.

Пневматические строительные конструкции в зависи­мости от характера работы обычно разделяются на две самостоятельные группы — пневмокаркасные (надувные) и воздухоопорные (рис. IX.47). Пневмокаркасные кон­струкции— это надувные стержни или панели, несущая способность которых (сопротивление сжатию, изгибу, кручению) обеспечивается повышенным давлением воз­духа в замкнутом объеме элемента. Большое внутреннее давление воздуха (до 150 кПа) требует высокой степени герметичности и прочности материала. Это же условие ограничивает пролет конструкций, который с учетом эко­номической целесообразности для рядовых сооружений не превышает 15—16 м. Стоимость пневмокаркасных конструкций в 3—5 раза выше, чем воздухоопорных. Эти недостатки сдерживают их применение и серийный выпуск конструкций до сих пор в мире не налажен.

Основным достоинством пневмокаркасных конструк­ций является отсутствие избыточного давления воздуха в эксплуатируемом пространстве и, как следствие этого, потребности в процессе шлюзования. Пример неординар­ных пневмокаркасных конструкций — павильон Фудзи (рис. 1Х.48) и покрытие пневматического плавучего те­атра (рис. IX.49) на ЭКСПО-70 в г. Осаке.

 Принципы расчета пневматических конструкций. Проектирование строительных пневматических кон­струкций включает решение следующих задач: 1) на­хождение оптимальной формы оболочки; 2) установле­ние характера и величины силового воздействия; 3) вы­яснение физико-механических свойств материалов обо­лочек и обоснование расчетных сопротивлений; 4) выяв­ление перемещений оболочки под действием нагрузок; 5) определение напряженно-деформированного состоя­ния оболочки.

Эти задачи, общие для всех конструкций, примени­тельно к пневматическим оболочкам требуют специаль­ного подхода.

Формальным признаком оптимальной формы оболоч­ки может служить состояние равнонапряженности во всех направлениях по ее поверхности. К таким поверхностям можно отнести мыльную пленку. Однако найденные та­ким образом формы будут оптимальными только для воздействия внутреннего давления. При действии любой другой нагрузки это условие будет сразу нарушено и может привести к появлению на поверхности оболочки морщин и складок либо повышению расчетных усилий до уровня расчетных сопротивлений материала. Поэтому учет реальных условий работы оболочки требует анали­за ее напряженно-деформированного состояния и коррек­ции формы поверхности образованной мыльной пленки..

Основными нагрузками на пневматическую конструк­цию является избыточное давление, ветровые и снеговые воздействия. Влияние собственного веса оболочки, ввиду его малости по сравнению с другими нагрузками, обычно не учитывают. Однако в некоторых случаях при небольшом давлении под оболочечным пространством собственный вес может значительно влиять на очертание контура оболочки. Так, при отношении избыточного дав­ления Р к собственному весу оболочки g, равному />/£:= 4...5, форма поперечного сечения оболочки отлича­ется от круговой заметно, а при P/g = 2...3 — значитель­но. Распределение избыточного внутреннего давления на оболочку показано на рис. IX.51, а.

Для расчета пневматической конструкции на ветро­вое воздействие необходимо выявить картину обтекания оболочки потоком воздуха, выраженную в эпюре рас­пределения ветрового давления по ее поверхности. Пока еще это не удалось сделать с достаточной точностью.

 


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.029 с.