Приборы для измерения температур — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Приборы для измерения температур

2021-04-18 87
Приборы для измерения температур 0.00 из 5.00 0 оценок
Заказать работу

 

Жидкостные термометры.

Работа жидкостных термометров основана на изменении объема жидкости при изменении температуры. В качестве рабочих жидкостей применяют: ртуть, толуол, этиловый спирт и некоторые другие.

Жидкостные термометры в испытаниях СУ применяются для измерения температуры окружающей среды, воздуха и жидкостей в трубопроводах, а также для контроля состояния других приборов.

Широкое применение жидкостных термометров объясняется рядом преимуществ, которыми они обладают: широкий диапазон измеряемых температур (-200…+1200ºС), простота в обращении, высокая точность, отсутствие специальных источников питания и дополнительных приборов измерения. К недостаткам относятся невозможность измерения температуры в точке поверхности или объеме, чувствительность к ударам и вибрациям, невозможность непосредственного измерения разности температур, значительная инерционность, невозможность дистанционной передачи измерений.

Термометры электросопротивления – это приборы, в которых для измерения температуры используется свойство металлов при нагревании или охлаждении изменять электрическое сопротивление. Чувствительным элементом в таком термометре является проволока, которая наматывается на изолирующий каркас (стекло, фарфор) и вместе с ним помещается в корпус, защищающий чувствительный элемент от механического и химического


воздействий окружающей среды.

Термометры электросопротивления применимы в широком диапазоне температур, при этом обеспечивают высокую точность измерения, обладают дистанционностью передачи и возможностью автоматической записи результатов измерения.

К недостаткам таких приборов относятся: необходимость в источнике питания, большая инерционность, невозможность измерения температур в точке, погрешности, вносимые изменением сопротивления соединительных проводов под воздействием температуры.

Термоэлектрические пирометры (термопары). Принцип работы термопары основан на том, что в цепи, составленной из двух разнородных проводников, возникает электрический ток, если места соединения проводников имеют разную температуру. Силы, вызывающие этот ток, называются термоэлектродвижущимися силами.

Величина электродвижущей силы в общем случае может быть различной при одинаковой разности температур в зависимости от их абсолютных значений. Эта зависимость будет однозначной только в том случае, если температуру одного из соединений поддерживать постоянной.

Конец термопары, помещаемый в измеряемую среду, называют рабочим. Конец, температуру которого поддерживают постоянной, называют свободным. Обычно свободный конец помещают в среду с температурой тающего льда (ОС). До начала измерений у термопар снимают градуировочную характеристику, в процессе градуировки рабочий спай термопары последовательно нагревают до различных температур и определяют термоэлектродвижущую силу.

По материалу проводников, применяемых в термопарах, их можно разбить на две группы: термопары из благородных и термопары из неблагородных металлов.

Из первой группы наиболее широкое применение нашли термопары платинородиевые - платиновые и платиноиридиевые – платиновые. Они применяются для регистрации высоких температур (до 1600ºС) при исследовании процессов горения основных и форсажных камер сгорания.

К недостаткам платиновых термопар следует отнести: малые величины развиваемых при измерении термоэлектродвижущих сил (в связи, с чем требуется высокочувствительная электроизмерительная аппаратура); значительное удельное электросопротивление, а также высокая стоимость.

Основные достоинства термопар второй группы – доступность и относительно низкая стоимость термоэлектродного материала. Благодаря этому электроды можно делать существенно большей толщины (если при измерениях не имеет значения инерционность показаний), что увеличивает механическую прочность и снижает электросопротивление электродов. Основными разновидностями термопар второй группы являются хромель-алюмелевая и хромель-копелевая термопары. Недостаток этих термопар – относительно невысокая рабочая температура (порядка 1000ºС). Для


измерения более высоких температур применяются платинородиевые и другие термопары, которые размещаются в охлаждаемых корпусах и позволяют измерять температуры до 1800°С и выше.

ТермоЭДС в термоэлектрическом пирометре измеряют милливольтметром или потенциометром. Милливольтметры, выпускаемые промышленностью, имеют шкалу, градуированную в градусах и милливольтах. Каждый милливольтметр предназначен к использованию в комплекте с определенной термопарой. Измерение термоЭДС с помощью потенциометра основано на уравновешивании измеряемого напряжения известным напряжением. Погрешность измерений не превышает ±1%.

Термоиндикаторные краски – химические вещества, изменяющие свой цвет при нагреве выше определенной температуры и сохраняющие его затем при охлаждении. Указанное свойство используется при определении температур деталей двигателя. Набором термоиндикаторных красок можно измерять температуры от 40 до 1100ºС с удовлетворительной степенью точности, а также получать распределение температур по поверхности. Перед экспериментом образцы красок наносят на детали, которые нагревают в электропечи до различных температур и фиксируют температуры перехода и получаемые оттенки.

В дальнейшем они используются для расшифровки результатов экспериментов.

Термоиндикаторные краски регистрируют максимальную температуру во время опыта, поэтому выход на исследуемый режим не должен сопровождаться забросом температур.

Метод измерения температуры с помощью термоиндикаторных красок обладает рядом преимуществ: не нарушается целостность детали, условия теплообмена с окружающей средой; возможно применять на вращающихся деталях; не требуется специальное измерительное оборудование; краски просты в применении и механически прочны. Недостатки метода – он не позволяет измерять температуру деталей на переменных режимах и распределение температур в глубине материала.

 

ИЗМЕРЕНИЕ РАСХОДА ТОПЛИВА

 

При испытаниях авиационных двигателей в стендовых условиях и в полете одним из основных параметров, дающих возможность определить экономичность двигателя, является расход топлива. Существует достаточно большое количество методов измерения расходов топлива, основанных на различных физических принципах (дроссельные расходомеры, скоростные расходомеры, объемные и массовые расходомеры, ультразвуковые расходомеры). Наиболее распространенными являются дроссельные и скоростные расходомеры, позволяющие измерять мгновенные и суммарные расходы топлива соответственно.



Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.