Перпендикулярности плоскостей. — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Перпендикулярности плоскостей.

2021-04-18 68
Перпендикулярности плоскостей. 0.00 из 5.00 0 оценок
Заказать работу

 Если две плоскости (α1 и α2) заданы общими уравнениями вида:

A1x+B1y+C1z+D1 =0 и A2x+B2y+C2z+D2 =0,

то очевидно, что угол между ними равен углу между их нормалями, то есть между векторами n 1={ A1, B1, C1) и n 2={ A2, B2, C2). Из формулы (5.6) получаем, что косинус угла между плоскостями α1 и α2 равен

                                                             (8.4)

Условие параллельности плоскостей заключается в параллельности нормалей:

                                                                                                    (8.5)

а условие перпендикулярности плоскостей – в перпендикулярности нормалей или равенстве нулю их скалярного произведения:

               A1 A2 + B1 B2 + C1 C2 = 0.                                                                  (8.6)

 

  Выведем еще несколько уравнений плоскости. Пусть плоскость проходит через точки М 1(х1, у1, z1), M 2(x2, y2, z2) и M 3(x3, y3, z3), не лежащие на одной прямой. Тогда векторы М1М 2 ={ x2 - x1, y2 - y1, z2 - z1 }, М1М 3 ={ x3 - x1, y3 - y1, z3 - z1М1М ={ x - x1, y - y1, z - z1 }, где М(x, y, z) произвольная точка плоскости, компланарны. Следовательно, их смешанное произведение равно нулю. Используя координатную запись смешанного произведения, получаем:

                                                                             (8.7)

Это уравнение, которому удовлетворяют координаты х, у, z любой точки, лежащей на искомой плоскости, является уравнением плоскости, проходящей через три данные точки.

Способом, аналогичным изложенному в лекции 7, можно получить нормальное уравнение плоскости:

                                                                            (8.8)

где р – длина перпендикуляра ОР, опущенного из начала координат на плоскость, а cosα, cosβ, cosγ – направляющие косинусы нормали к этой плоскости. При этом расстояние от любой точки А пространства до данной плоскости определяется по формуле:

              ,                                                  (8.9)

где x0, y0, z0 – координаты рассматриваемой точки А. Подмодульное выражение в формуле (8.9) называется отклонением точки А от плоскости и принимает положительные значения, если А и начало координат лежат по разные стороны от плоскости, и отрицательные, если эти две точки лежат по одну сторону от плоскости. Нормальное уравнение получается из общего уравнения плоскости в результате деления его на нормирующий множитель знак которого противоположен знаку D.

Доказательства всех сформулированных утверждений полностью аналогичны исследованию нормального уравнения прямой на плоскости, рассмотренного в лекции 7.

 

                  Прямая в пространстве.

 

Замечание. Прямую в пространстве невозможно задать одним уравнением. Для этого требуется система двух или более уравнений.

Первая возможность составить уравнения прямой в пространстве – представить эту прямую как пересечение двух непараллельных плоскостей, заданных уравнениями

A1 x+ B1 y+ C1 z+ D1= 0 и A2 x+ B2 y+ C2 z+ D2 =0, где коэффициенты A1, B1, C1 и A2, B2, C2 не пропорциональны:

 

                    A1x+B1y+C1z+D1 =0                                                              (8.10)

                    A2x+B2y+C2z+D2 =0.

Однако при решении многих задач удобнее пользоваться другими уравнениями прямой, содержащими в явной форме некоторые ее геометрические характеристики.

Составим уравнения прямой, проходящей через точку М0(x0, y0, z0) параллельно вектору a ={ l, m, n}.

Определение 8.1. Любой ненулевой вектор, параллельный данной прямой, называется ее направляющим вектором.

Для любой точки М(x, y, z), лежащей на данной прямой, вектор М0М = { x - x0, y - y0, z - z0) коллинеарен направляющему вектору а. Поэтому имеют место равенства:

                                                                                   (8.11)

называемые каноническими уравнениями  прямой в пространстве.

В частности, если требуется получить уравнения прямой, проходящей через две точки:

М11, у1, z1) и M2(x2, y2, z2), направляющим вектором такой прямой можно считать вектор М1М 2 = { x2 – x1, y2 - y1, z2 - z1 }, и уравнения (8.11) принимают вид:

                 -                                                         (8.12)

- уравнения прямой, проходящей через две данные точки.

Если же принять каждую из равных дробей в уравнениях (8.11) за некоторый параметр t, можно получить так называемые параметрические уравнения прямой:

                      .                                                                             (8.13)

Для того, чтобы перейти от уравнений (8.10) к каноническим или параметрическим уравнениям прямой, требуется найти направляющий вектор этой прямой и координаты любой точки, принадлежащей ей. Направляющий вектор прямой ортогонален нормалям к обеим плоскостям, следовательно, он коллинеарен их векторному произведению. Поэтому в качестве направляющего вектора можно выбрать [ n1 n2 ] или любой вектор с пропорциональными координатами. Чтобы найти точку, лежащую на данной прямой, можно задать одну ее координату произвольно, а две остальные найти из уравнений (8.10), выбрав их так, чтобы определитель из их коэффициентов не равнялся нулю.

Пример. Составим канонические уравнения прямой

               .

Найдем [ n1 n2 ]. n 1 = {2,1,-3}, n 2 = {1,-5,4}. Тогда [ n1 n 2 ] = {-11,-11,-11}. Следовательно, направляющим вектором прямой можно считать вектор {1,1,1}.

Будем искать точку на прямой с координатой z0=0. Для координат х 0 и у0 получим систему уравнений   , откуда х 0=2, у 0=1. Теперь можно составить канонические уравнения прямой:

                  .

Параметрические уравнения той же прямой имеют вид:

                 .      

Замечание. Если какая-либо из координат направляющего вектора равна 0, то предполагается, что для любой точки прямой числитель соответствующей дроби в канонических уравнениях тоже равен 0.

 


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.