Угол между плоскостями — это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Угол между плоскостями — это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях

2020-11-03 152
Угол между плоскостями — это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях 0.00 из 5.00 0 оценок
Заказать работу

 

Другими словами, в плоскости α мы провели прямую а, перпендикулярную с. В плоскости β — прямую b, также перпендикулярную с. Угол между плоскостями α и β равен углу между прямыми а и b.

Условия перпендикулярности 2х плоскостей. Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Условия параллельности 2х плоскостей. Две плоскости α1 и α2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит

Угол между прямыми в пространстве:

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим

.

Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов и :

Две прямые параллельны тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, т.е. l 1 параллельна l 2 тогда и только тогда, когда параллелен .

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих коэффициентов равна нулю: .

Угол между прямой и плоскостью:

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость.

 

Вектором называется отрезок, для которого указано, какой из его концов считается началом, а какой - концом. Любая точка пространства рассматривается как нулевой вектор.

рис. 63 - нулевой вектор, обозначается . Длина вектора обозначается | |. Два ненулевых вектора называются коллинеарными, если они лежат на одной или на параллельных прямых.

Пусть два ненулевых вектора и коллинеарны. Если при этом лучи АВ и СD сонаправлены, то и называются сонаправленными, а если эти лучи не являются сонаправленными, то векторы и называются противоположно направленными.

Нулевой вектор условимся считать сонаправленным с любым вектором. Запись означает, что векторы и сонаправлены, а запись - что векторы с и d противоположно направлены.

рис. 64 Векторы называются равными, если они сонаправлены и их длины равны. От любой точки можно отложить вектор, равный данному, и притом только один.

Действия над векторами.

1. Сложение векторов по правилу треугольника:

для этого нужно от произвольной точки пространства отложить вектор , равный , затем от точки В отложить вектор , равный . Вектор называется суммой и . Таким образом + = , для любых трех точек А, В и С.

2.

 

3. Сложение векторов по правилу параллелограмма:

для этого векторы откладывают от одной точки.

4.
Два ненулевых вектора называются противоположными, если их длины равны и они противоположно направлены.

 

5. Вычитание векторов:

рис. 67 Разностью векторов и называется такой вектор, сумма которого с вектором равна вектору . Разность - можно найти по формуле - = + (- ), где (- ) - вектор, противоположный вектору . - = .

6.
Сумма нескольких векторов в пространстве вычисляется так же, как и на плоскости и не зависит от порядка слагаемых.

 

7. Умножение вектора на число. Произведением ненулевого вектора на число k называется такой вектор , длина которого равна |k|·| |, причем векторы и сонаправлены при k 0 и противоположно направлены при k<0. Произведением нулевого вектора на произвольное число считается нулевой вектор.

Произведение вектора на число k обозначается так: k . Из определения произведения вектора на число следует, что для любого числа k и любого вектора векторы и k коллинеарны. Из этого же определения следует, что произведение любого вектора на число нуль есть нулевой вектор.

Для любых векторов , и любых чисел k, l справедливы равенства:

(kl) = k(l ) (сочетательный закон);

k( + ) = k + k (первый распределительный закон);

(к+l) = k + l (второй распределительный закон).

Лемма. Если векторы и коллинеарны и вектор не равен нулевому вектору, то существует число k такое, что вектор равен k .

Векторы называются компланарными, если при откладывании от одной и той же точки они будут лежать в одной плоскости. Ясно, что любые два коллинеарных вектора компланарны; три вектора, среди которых имеется два коллинеарных, также компланарны, а три произвольных вектора могут быть как компланарными, так и некомпланарными.

Если вектор можно представить в виде = х + у , где х и у - некоторые числа, то векторы , и компланарны.

рис. 68 Для сложения трёх некомпланарных векторов можно пользоваться так называемым правилом параллелепипеда. Опишем его. Пусть , , - некомпланарные векторы. Отложим от произвольной точки О пространства векторы = , = , = и построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были рёбрами. Тогда если ОD - диагональ этого параллелепипеда, то = + + . Действительно, .

Теорема. Любой вектор можно разложить по трём данным некомпланарным векторам, причём коэффициенты разложения определяются единственным образом.

Если , , - некомпланарные векторы, то любой вектор можно представить в виде:

= х + у + z ,

где х, у, z - числа.

 

Основные понятия тригонометрии

В геометрии угол определяется как часть плоскости, ограниченная двумя лучами. При таком определении получаются углы от 0° до 180°. Однако угол можно рассматривать и как меру поворота. Возьмем на координатной плоскости окружность радиуса R с центром O в начале координат. Пусть одна сторона угла α с вершиной в начале координат O идёт по оси абсцисс, а сам угол положительный, то есть, по определению, отложен по направлению против часовой стрелки от положительного направления оси абсцисс. Из геометрии известно, что отношение длины дуги l, на которую опирается этот угол, к радиусу R этой окружности не зависит от самого радиуса. Поэтому это отношение может быть выбрано характеристикой и мерой данного угла:

Такая мера называется радианной мерой угла и используется наравне с угловой. Говорят, что угол равен определённому числу радиан. Ясно, что угол в один радиан опирается на длину дуги окружности, равную её радиусу. В самом деле: Обозначение радиана – «рад». Так как длина всей окружности радиуса R равна 2π R, то всей окружности соответствует угол радиан. Поскольку вся окружность содержит 360°, то один радиан соответствует градусов:

И наоборот,

Значит, можно написать следующие формулы перехода от градусного измерения к радианному:

и от радианного измерения к градусному:

Обозначение «рад» при записи часто опускают и вместо, например, 180° = π рад пишут просто 180° = π.

Пользуясь этими формулами, легко получить следующую таблицу перевода некоторых наиболее часто встречающихся углов из градусной меры в радианную и обратно.

Угол, градусы 30° 45° 60° 90° 180° 270° 360°
Угол, радианы 0 π
 

Пример 1

Определите радианную меру угла, если его градусная мера равна: 1) 2°; 2) 225°.

 

 

Снова рассмотрим на координатной плоскости окружность радиуса R с центром O в начале координат. Как известно, координатные оси делят окружность на четыре дуги, которые называют четвертями.

Рисунок 2.4.1.1. Окружность радиуса R

Рассмотрим произвольный угол α. Изобразим его как угол поворота радиус-вектора против часовой стрелки. При таком повороте точка A (R; 0) перейдёт в некоторую точку B (x; y) на этой окружности, при этом (α может быть больше не только 180°, но и больше 360°). В зависимости от того, в какой четверти лежит точка B, угол α называется углом этой четверти.

Рисунок 2.4.1.2

Докажем, что отношения и не зависят от величины радиуса R. Действительно, выберем на отрезке OA точку такую, что Построим окружность с центром в начале координат радиуса Построенная окружность пересекает радиус-вектор в точке Так как векторы и коллинеарны и одинаково направлены, то

Однако равные векторы имеют равные координаты, следовательно,

Откуда следует после деления обеих частей последних равенств на R 1, что

Итак, для любого угла поворота отношение координат радиус-вектора к его длине не зависит от этой длины радиус-вектора. Следовательно, отношения и характеризуют не окружность, а лишь угол поворота. Значит, для того, чтобы рассмотреть основные свойства этих отношений, можно взять окружность любого радиуса, например, R = 1. Так мы и сделаем. Окружность единичного радиуса с центром в начале координат называется тригонометрической окружностью.

 

Координатная окружность

Ввиду всего вышесказанного, рассмотренные отношения и пр. как характеристики только угла (но не окружности) удобно как-либо обозначить. Введём несколько ключевых определений.

 

 

Функция y = cos x

 

  Синусом угла α называется ордината y точки B − конца радиус-вектора единичной окружности, образующего угол α с осью абсцисс.
sin α = y.

 

 Функция y = sin x

 

  Тангенсом угла α называется отношение ординаты y к абсциссе x точки B − конца радиус-вектора единичной окружности, образующего угол α с осью абсцисс.

 

Модель 2.9. Функция y = tg x

 

  Котангенсом угла α называется отношение абсциссы x к ординате y точки B − конца радиус-вектора единичной окружности, образующего угол α с осью абсцисс.

 

Модель 2.10. Функция y = ctg x

Ясно, что для данного угла α функции sin α, cos α, tg α и ctg α, которые называются тригонометрическими функциями, определены однозначно (поскольку каждому углу соответствует единственная точка на тригонометрической окружности). Однако если функции sin α и cos α определены для любого угла α, то функции tg α и ctg α определены только для тех углов, для которых не равен нулю знаменатель дробей и Значит, tg α не определён для углов вида где ctg α не определён для углов вида

Поскольку синус по определению равен ординате точки на единичной окружности, а косинус − абсциссе, то знаки тригонометрических функций по четвертям будут такими:

Функция

Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.032 с.