Материя плазмы крови человека — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Материя плазмы крови человека

2019-11-28 176
Материя плазмы крови человека 0.00 из 5.00 0 оценок
Заказать работу

 

Чтобы ближе познакомиться с исследованиями периферической крови, понять сущность квантовых процессов, происходящих в ней во время болезни, нужно ознакомиться с самим понятием «материя плазмы крови» и получить некоторое представление о ней.

Термин «плазма» не был введен в научный оборот физиками. Его впервые использовал чешский врач-физиолог Ян Евангелиста Пуркинес (1787–1869) для своих экспериментов. Он получал это текучее вещество, имевшее фактуру желе, после удаления из взятой на анализ крови лейкоцитов и эритроцитов. Позже было обнаружено, что физически плазма крови обладает свойствами, нехарактерными для обыкновенных жидкостей, и ученые возвели ее в звание особого агрегатного состояния вещества, что позволило впоследствии, по аналогии, плазмой назвать и четвертое – после твердого, жидкого и газообразного – ионизированное квазинейтральное фазовое состояние материи.

Известно, что плазма – это жидкая составляющая крови. В нее входят такие сложные молекулы, как белки, витамины, гормоны, ферменты; некоторые разновидности клеток, а также положительно и отрицательно заряженные ионы, нейтроны и немного свободных электронов. Кроме того, важная роль отводится свободным электронам и ионизированным атомам. Это позволяет характеризовать плазму крови как частично ионизированную материю.

Основной особенностью плазмы крови является ее квазинейтральность. Это означает, что объемные плотности положительно и отрицательно заряженных частиц, из которых она образована, оказываются почти равными, но только почти. Приставка «квази» означает, что нейтральность плазмы крови соблюдается не локально, а в среднем. Это очень важная ее особенность, зная которую, можно сказать, насколько она ионизирована, или соответствует ли данная материя именно плазме, а не относится к другому виду материи.

В небольших объемах плазмы вследствие различных причин происходит разделение положительных и отрицательных зарядов, что вызывает нарушение электронейтральности. Тогда в этих объемах создаются электрические поля, стремящиеся восстановить электронейтральность.

Для плазмы присуще проявление коллективного поведения частиц во время плазменных колебаний. В плазме могут распространяться электромагнитные и звуковые волны. Электромагнитные волны есть возмущение электромагнитного поля в плазме, звуковые волны – возмущение давления, или плотности плазмы. Магнитная упругость плазмы порождает в ней так называемые магнитно-гидродинамические волны двух типов. Наглядно их можно представить как изгибание колебаний силовых линий вдоль или поперек магнитного поля плазмы. Интересно, что в плазме могут возникать ионно-звуковые колебания на частотах радиодиапазона – «радиозвук». Звуковое сопровождение сопутствует возбуждению электромагнитного поля с резким подъемом его интенсивности. Помимо звука и «радиосвета», в зависимости от плазменных образований в материи плазмы крови могут возникать и другие волны.

Состоянию плазмы крови человека соответствует определенное кислотно-щелочное равновесие (КЩР), которое характеризуется специальным показателем pH крови («сила водорода»). Значение pH зависит от соотношения между положительно заряженными ионами (формирующими кислую среду) и отрицательно заряженными ионами (формирующими щелочную среду).

Диапазон колебаний водородного показателя для крови здорового человека (pH) составляет 7,37–7,44, (нейтральное значение pH среды 7,0).

Кислотно-щелочное равновесие крови поддерживается буферными системами плазмы и клетками крови. Буферные системы крови – это физиологические системы, которые обеспечивают уровень КЩР. Основная функция буферных систем заключается в предотвращении значительных сдвигов уровня водородного показателя (pH), путем взаимодействия буфера как с кислотой, так и с основанием. Получается, что кислотно-щелочной баланс – это фактор жизни человека. Исправление дисбаланса буферных систем крови переводит человека из болезненного в здоровое состояние. То есть необходимо уметь воздействовать на свойства плазмы.

Важнейшими буферными системами крови являются бикарбонатная и наиболее мощная гемоглобиновая, фосфатная и белковая. Каждая система состоит из двух частей – слабой кислоты и соли этой кислоты, сильного основания.

Бикарбонатная буферная система представляет собой кислотно-щелочную пару, состоящую из молекулы угольной кислоты H2CO3, осуществляющей функции донора протона, и бикарбоната – иона HCO3 (—), выполняющего роль акцептора протона.

Механизм действия данной системы заключается в том, что при выделении в кровь относительно больших количеств кислых продуктов водородные ионы Н+ взаимодействуют с ионами бикарбоната и приводят к образованию слабо диссоциирующей угольной кислоты. Последующее снижение уровня угольной кислоты достигается в результате ускоренного выделения углекислого газа через легкие в процессе их гипервентиляции. Если в крови увеличивается количество оснований, то они, взаимодействуя со слабой угольной кислотой, образуют ионы бикарбоната и воду. При этом не происходит каких-либо заметных сдвигов значения pH. Бикарбонатная буферная система функционирует как эффективный регулятор в области pH 7,4.

Данная система тесно связана с гемоглобиновой буферной системой, которая является самой мощной буферной системой крови. Она в 9 раз мощнее бикарбонатной буферной системы, так как на ее долю приходится 75 % от всей буферной емкости крови.

Участие гемоглобина в регулировании pH крови связано с его ролью в транспорте кислорода. Константа диссоциации кислотных групп гемоглобина меняется в зависимости от насыщения его кислородом. При насыщении кислородом гемоглобин становится более сильной кислотой. Отдавая же кислород и связывая углекислый газ, гемоглобин, наоборот, превращается в очень слабую органическую кислоту.

Учитывая, что постоянство кислотно-щелочного равновесия в организме играет существенную роль в протекании всех биохимических процессов, в клинике при анализе крови значительный интерес представляет определение резервной щелочности крови.

В поддержании в организме кислотно-щелочного равновесия участвуют и другие буферные системы, а также ряд органов: легкие, почки, кожа, печень (одной из функций которой является нейтрализация кислых продуктов обмена) и кишечник.

 

Новые системы крови

 

При исследовании периферической крови больных и здоровых людей через краткие и длительные промежутки времени, были выявлены еще две дополнительные системы, не учитываемые пока практической медициной: система микроорганизмов и информационная система. Они трудноконтролируемые, но оказывают важное воздействие на состояние здоровья. Человек живет и развивается не благодаря случайному стечению обстоятельств, а в соответствии с общими принципами организации материи. Дополнительная информация по исследованию крови может внести некоторую корректировку в процесс лечения или объяснить: почему врачевание даже хорошо зарекомендовавшими себя лекарственными препаратами зачастую не приносит облегчения пациенту, а также понять первопричину любого заболевания.

Можно ли будет назвать эти две новые системы буферными? Назовем их просто новыми системами крови, влияющими на здоровье человека. Они выявлены в ходе исследования материи плазмы крови больных и здоровых людей авторами данной книги Алексеевой Е. В. и Елисеевой О. И.

Первая система – это система микроорганизмов крови, вторая – это информационная система крови.

За систему микроорганизмов крови ответственна эволюционно закрепленная микрофлора и фауна крови. Микроорганизмы, которые входят в микрофлору и фауну крови размножаются, меняют свои формы под воздействием различных факторов. Однако в медицине кровь считается стерильной. А на самом деле продукты жизнедеятельности микроорганизмов могут быть настолько необычны и пребывать в такой концентрации, что смогут оказывать влияние на водородный показатель (pH) крови и сбивать ее частотный режим.

Авторы напоминают читателям, что мы исследовали периферическую кровь у одних и тех же больных, а затем выздоровевших людей, причем занимались ее анализом на постоянной основе в течение длительного времени. Такой метод исследования материи плазмы дает возможность наблюдать жизненный цикл многих микроорганизмов, живущих в крови и не вызывающих явных воспалительных расстройств. Но их продукты жизнедеятельности могут со временем негативно повлиять на весь организм. Как именно это происходит, мы описываем в предлагаемой книге.

Многие микроорганизмы крови ранее были рассмотрены и описаны в монографии Алексеевой Е. В. «Микромир в крови человека» (Новый центр, Москва. 2003). Издание имело большой успех у врачей, практикующих борьбу с инфекцией. Сегодня эта книга пользуется особой популярностью среди врачей, занимающихся диагностикой и лечением с использованием методик квантовой медицины.

Важно отметить, что эволюционно закрепленная система крови человека, в которую входят три разных вида микроорганизмов: несовершенный гриб, диатомовая водоросль и жгутиковый микроорганизм (животная клетка), присутствуют в крови постоянно в различных формах, оказывая непрестанное воздействие на состав крови. Несовершенный гриб, размеры и форма которого соизмеримы с эритроцитом, выполняет в системе микроорганизмов роль буфера между водорослью и жгутиковым микроорганизмом.

Важной особенностью несовершенного гриба является то обстоятельство, что он не выделяется при помощи современных красителей крови, поэтому нет возможности различить его в огромном массиве эритроцитов. Он хорошо наблюдаем только в том случае, когда начинает активизироваться в связи с изменениями условий среды обитания, вызванными другими микроорганизмами. При сверхбыстром размножении, например, водоросли относительно жгутикового микроорганизма, несовершенный гриб, исполняя роль буфера, подавляет ее плодовитость и возвращает систему микроорганизмов крови в нейтральное положение. Так работает система микроорганизмов крови.

На микрофотографиях 1–6 показаны микроорганизмы, входящие в эволюционно закрепленную систему микроорганизмов крови: несовершенные грибы, диатомовая водоросль и жгутиковый микроорганизм.

 

Микрофотографии 1, 2.  Показаны несовершенные грибы, формирование ими гаплоидного мицелия в материи плазмы крови

 

Микрофотографии 3, 4.  Диатомовая водоросль. На ее поверхности наблюдается шов, относительно которого она в дальнейшем раскручивается

 

Микрофотографии 5, 6.  Животная клетка в крови человека. Слева одна из форм развития: клетка гидрориза, справа – фаговая клетка второго цикла развития

 

Мы выделяем здесь наиболее интересные формы развития животной клетки, которые можно наблюдать при длительном исследовании ее жизненного цикла.

Чем примечательна система микроорганизмов крови? Она тесно связана с гемоглобиновой буферной системой крови. Дело в том, что не только несовершенные грибы, но и микроорганизмы флоры и фауны крови и просто внедрившиеся микроорганизмы часто имеют формы и размеры, идентичные эритроцитам. Продуктами своей жизнедеятельности они воздействуют на привычную среду клеток крови. Микроорганизмы съедают часть эритроцитов, переносчиков кислорода, чем резко снижают его содержание в крови. При этом нарушается не только стабильность существования системы микроорганизмов, но и гемоглобиновая буферная система. Теперь она не обеспечивает материю плазмы крови необходимым биохимическим составом, требуемым для поддержания водородного показателя. Начинаются сбои и в бикарбонатной буферной системе, что отражается на количестве углекислого газа в крови. Соответственно, происходят нарушения в дыхательной системе организма.

Если не учитывать данную систему микроорганизмов, не знать способов воздействия на нее, то со временем водородный показатель крови pH выйдет за пределы, соответствующие здоровому организму. И тогда начнется нарастание болезненных симптомов, а гемоглобиновая буферная система так и не сможет прийти в норму, потому что часть эритроцитов будет замещена клетками микроорганизмов.

 

Микрофотографии 7, 8.  Хищные несовершенные грибы, выявленные при раковом заболевании. Слева на фото 7 две нити грибов организуют единый гаплоидный мицелий. Какой силой будет обладать новая форма гриба, впитавшая в себя одновременно два или несколько хищных грибов? Это может быть гриб, возглавивший новую ветку эволюции микроорганизма в материи плазмы крови. Справа на фото 8 – несовершенный хищный гриб в стадии формирования своего мицелия нападает на эритроцит. Выше на этом же фото показана клетка, близкая по размерам и форме эритроциту, которую сформировал несовершенный хищный гриб. Ему остается только сгладить поверхность, принять форму и размеры эритроцита, чтобы стать «невидимым»

 

Наибольший ущерб от агрессии микроорганизмов испытывают эритроциты. Например, это происходит при раковом заболевании, когда в материи плазмы крови присутствуют хищные несовершенные грибы. Микроорганизмы используют свои природные приспособления: ловчие кольца и сети для уничтожения эритроцитов одновременно в большом объеме крови.

 

Микрофотографии 9, 10.  Показаны ловчие кольца и сети, являющиеся приспособлениями гриба для нападения на эритроциты

 

Авторы отмечают уникальность микрофотографий 13 и 14. В плазме крови человека, больного раком, наблюдается формирование конидиеносцев гриба со спорами внутри. Такая форма размножения (с помощью спор) является более развитой. Подобный образец невозможно подготовить к исследованию в лабораториях из-за крошечных размеров и хрупкости объекта. И лишь непосредственное отслеживание состояния крови человека позволяет выявлять и изучать «повадки», а также жизненный цикл несовершенных грибов – микроорганизмов, невидимых невооруженным глазом. Споры хорошо просматриваются при увеличении в 10 000 раз (см. микрофотографию 14). Изучая поведение несовершенных грибов в материи плазмы крови, хочется, наоборот, назвать их самыми «совершенными» созданиями природы.

 

Микрофотографии 11, 12.  Слева показано нападение хищного несовершенного гриба на эритроцит. Справа: две нити гриба формируют совместный гаплоидный мицелий, что вызывает усиление агрессии и способствует изменениям продуктов жизнедеятельности

 

Микрофотографии 13, 14.  Споры хищного несовершенного гриба в конидиеносце на гаплоидном мицелии

 

Именно они всегда присутствуют в плазме крови у любого человека – больного или здорового. Вредоносные они или приносящие пользу? Это уже другая тема…

Вторую систему крови мы назвали информационной. Она складывается из информационного потока приливной гравитационной волны Солнца и информационного потока электромагнитных волн мазерного солнечного излучения, на которые реагирует материя плазмы крови. Под воздействием этих двух сил в материи плазмы крови происходит смешение и обновление вещества, а также поддерживается квазинейтральность плазмы. Негативное воздействие информационной системы может полностью разрушить организм человека. В этом случае для восстановления нормальных значений pH крови требуются дополнительные знания, которые мы попытаемся донести до читателей.

Рассмотрим более подробно свойства обоих информационных потоков, образующих информационную систему крови, и параллельно познакомим читателей со своим открытием, которое нам удалось сделать, используя метод просмотра мазков периферической крови одних и тех же больных и затем выздоровевших людей в течение кратких и длительных промежутков времени (от несколько дней до года).

Такое исследование довольно трудоемко, но именно этот метод дает много новой информации о возникновении болезни и ее причине.

 

 

Научное открытие авторов книги

 

Любое открытие никогда не остается незамеченным. Сразу невозможно представить его последствия для науки. Оно может повлечь за собой большое количество экспериментов и привести к новым открытиям. Оно может дать толчок развитию новых научных направлений. А может пройти и незамеченным… Конечно, авторам этого не хотелось бы.

Однако нашей основной целью является нахождение способов излечения от рака. А для этого надо узнать точную первопричину возникновения ракового заболевания и выявить те участки и структуры организма, воздействие на которые позволит погасить очаги заболевания в зародыше. Кроме того, необходимо разработать методику ранней диагностики, в том числе на наноуровне, где происходит зарождение болезни.

Первые попытки исследования больных раком на микроуровне, на уровне микроорганизмов, на уровне микронов не дали исчерпывающего ответа на вопрос о первопричине болезни, поэтому нам пришлось обратиться к наноуровню. Но и здесь картина проявилась не сразу. При исследовании потребовалось отделить все микроорганизмы от клеток крови, чтобы определить их количество, при котором все буферные системы сохраняют свою работоспособность. Вот тогда-то и удалось выявить информационную систему крови.

 

Было установлено, что в материи плазмы крови человека существуют приемно-передающие устройства на возбужденных молекулах гидроксила (OH), способные воспринимать мазерное космическое излучение Солнца.  

 

Впервые мы озвучили свое открытие на Московской международной конференции по квантовой медицине в 2005 году, затем написали ряд книг, которые могли прочитать все желающие. В каждой нашей книге преследовалась одна и та же цель: познать причину возникновения рака и отследить самое начало заболевания, сопоставив просмотр мазков крови, а также усовершенствовать методику квантовой медицины. Открытие помогло ответить на многие вопросы, которые наиболее подробно описаны в книге авторов «Почему человек болеет раком?». Мы изложили в ней квантовую теорию рака Алексеевой – Елисеевой. Но многие не вошедшие в ту книгу наблюдения и выводы мы излагаем именно здесь. Уверены, они будут интересны читателю.

Мы убеждены, что наше открытие заинтересует физиков, астрономов, химиков, но главное – оно заинтересует медиков, поскольку поможет исправить прошлые ошибки, изменить представления о механизме болезни, разработать новые методы лечения. Наше открытие в какой-то мере также подкрепляет утверждения ученого Чижевского о влиянии Солнца и солнечных бурь на организм человека.

Какие же основные выводы можно сделать на основании проведенных исследований?

Их два и они основаны на суточном биологическом ритме, или внутреннем «маятнике» человека:

 

1. Космическое мазерное излучение Солнца, испускаемое возбужденными молекулами гидроксила (OH), поддерживает колебательные процессы в материи плазмы крови человека, стабилизирует все жизненные процессы в организме и способствует смешению и обновлению крови.

2. Среди огромного количества природных ритмов существуют такие, которые дают начало не только жизни, но и болезни. Наиболее уязвимым для здоровья человека является ритм день-ночь. Материя плазмы крови человека «отзывается» на приливное воздействие Солнца, и потому солнечная гравитация в определенные часы оказывает более активное воздействие на материю плазмы крови. Существует две доминантные солнечные приливные волны в течение суток, которые повторяются через каждые 12 часов.

 

Итак, основой квантовой теории рака являются физические процессы, которые наблюдаются в материи плазмы крови при воздействии на нее мазерного излучения Солнца.

Исследуя материю плазмы крови человека, мы обнаруживаем знакомую картинку, которую не может пропустить ни один физик. Это картина интерференции, то есть результат взаимодействия электромагнитных волн с молекулами и атомами в материи плазмы крови.

До сих пор ученые не знают причин существования электромагнитных волн в природе, однако невозможно переоценить их роль в процессах мироздания. Физики окрестили их «первичными сущностями» Вселенной, ведь ее развитие началось именно с них. Известно, что волны и вещество взаимодействуют между собой. Без такого взаимодействия не происходит ни одно событие во Вселенной. Активная жизнь Вселенной обязана именно этим «первичным сущностям» – электромагнитным волнам.

Не стала исключением необходимость их участия и в процессах, затрагивающих состояние здоровья человека. Космическое излучение, на которое реагируют отдельные молекулы плазмы крови, представляет собой поток электромагнитных волн определенной частоты. Необходимо было определить источник излучения и те молекулы, на которых происходит их рассеивание в материи плазмы крови.

 

Оказалось, что плазма крови человека воспринимает мазерное космическое излучение возбужденных молекул гидроксила OH, которое попадает на поверхность Земли от нашей ближайшей звезды – Солнца.  

 

Хромосфера и корона этого гигантского газового шара излучают нетепловые электромагнитные волны в пределах радиодиапазона. Молекула гидроксила состоит из одного атома водорода и одного атома кислорода (OH). Она может входить в структуру многих простых и сложных молекул в виде радикала или функциональной группы, а также образовываться в материи плазмы крови и при диссоциации молекул воды. Поскольку в плазме крови содержание воды составляет более 70 %, то ожидается, что молекулы гидроксила, или отрицательные ионы воды, столь широко представленные в материи плазмы крови, и могут реагировать на мазерное излучение Солнца. Однако спешить не будем.

Солнце словно «дышит», и мы воспринимаем его «дыхание». Когда на поверхности Солнца появляются пятна – это «дыхание» усиливается, когда оно спокойно – ослабевает. Его влияние ощущается все то время, когда Солнце присутствует на небосводе, исчезая лишь на ночь. Таким образом, плазма крови человека реагирует на мазерное излучение Солнца только в дневное время. Соответственно, дневные химические процессы, происходящие в материи плазмы крови, отличаются от ночных. Здесь обнаруживается сходство с растительным миром: дневные и ночные химические реакции у растений также различны.

В 1964 году советские астрофизики обнаружили в излучении из космического пространства загадочные линии в спектре сантиметрового радиодиапазона. Спектральный анализ этих линий показал, что они принадлежат излучению молекулы гидроксила, находящейся в возбужденном состоянии. Такие молекулы астрофизик И. Шкловский назвал «мистериумами». (Комаров В. Н. «Увлекательная астрономия». М.: Наука, МАИК, 2002).

Получается, что из ближнего космического окружения в атомы вещества поступает некая дополнительная энергия, которая заставляет их электроны «перескакивать» на более высокие энергетические орбиты. Атомы в этом случае считаются уже возбужденными. Например, в космосе, где энергия окружения слишком велика, возбужденные атомы могут «раздуваться» и представлять собой целые системы с огромным количеством новых более высоких энергетических уровней. Эти сильно возбужденные системы вовлечены в процессы, происходящие в межзвездном пространстве. В плазме крови человека электроны некоторых молекул, находящиеся на внешних орбитах, под воздействием дополнительной энергии космоса – тоже легко переходят на более высокие уровни энергии, что переводит соответствующие молекулы в возбужденное, неустойчивое состояние.

Спектральные линии «мистериума» работают на волне линии гидроксила. Их посылают солнечные газовые мазеры. Именно в мазерах достигается яркость линий гидроксила. В зависимости от свойств молекул они подразделяются на мега– и гигамазеры, то есть работающие на низких и высоких частотах.

Работа всех мазеров базируется на так называемом мазерном эффекте – вынужденном излучении определенных молекул, вызываемом получением энергии возбуждения, например от межзвездной среды. Атом в основном своем состоянии может только поглощать фотоны (энергию), а атом в возбужденном состоянии способен как поглощать, так и испускать фотоны определенной частоты и, в конце концов, возвращаться в нормальное, невозбужденное состояние. При этом энергия фотонов передается другим атомам и молекулам, находящимся в материи плазмы крови.

В современной физиологии считается, что все энергетические процессы в организме являются только результатом химических взаимодействий между биомолекулами. И при этом совершенно не учитывается влияние «радиосвета» Солнца на материю плазмы крови. Причем по картине интерференции, выявленной в материи плазмы, можно установить, что здесь присутствует именно мазерное излучение, так как оно когерентно и монохроматично. Сложнее установить молекулу, которая реагирует на этот мазерный эффект.

Слабый мазерный эффект наблюдается и в радиолиниях некоторых молекул, находящихся в плазме крови человека. Они воспринимают мазерное излучение, идущее от газовых мазеров на молекулах гидроксила, расположенных в областях короны или хромосферы Солнца. Авторы исследования наблюдали резкое изменение количества возбужденных молекул гидроксила в зависимости от солнечной активности. Это позволяет думать, что подобным образом наша ближайшая звезда участвует в жизнедеятельности человека. Получается, что природа создала устойчивую беспроводную связь человека с космосом, используя для этого некое антенное устройство, воспринимающее мазерное излучение, то есть нетепловое радиоизлучение Солнца. Обнаружить это удалось только в XXI веке, причем не только обнаружить, но и понять, какова степень влияния данного антенного устройства на организм человека.

В плазме крови человека посредством работы такой антенны формируется разнообразие новых антенных устройств, которые, иерархически взаимодействуя между собой, создают широкий диапазон частот, необходимых для жизнедеятельности организма, «выбраковки» аномалий, защиты от болезней. Все это способствует его сопротивляемости и приспособляемости к окружающим условиям. Причем нельзя думать, что подобный эффект наблюдается только при повышенной активности Солнца. Просто в этом случае его легче обнаружить и изучать, что и было отмечено в ходе исследований.

На использовании мазерного эффекта построена работа мазеров (квантовых генераторов). Эти устройства являются энергоносителями. Существуют гигантские космические мазеры, работающие на длине волны линии гидроксила (18 см). Механизм накачки таких мазеров еще не совсем ясен ученым. Но они полагают, что накачка обеспечивается определенными физическими условиями, происходящими в межзвездных облаках повышенной плотности. Например, у мазеров на молекулах метанола (CH3OH) рабочие частоты составляют 1,6 и 4,8 ГГц, а накачка таких мазеров обеспечивается их звездным окружением.

О мазерных устройствах, находящихся в плазме крови человека (наноэнергоносителях), мы будем говорить в дальнейшем и тогда же назовем молекулу, склонную проявлять легкий мазерный эффект – с включенным в нее радикалом гидроксила – и приводящую к неизлечимому заболеванию, к раку.

Любая антенна, даже та, которая находится в сотовом телефоне, излучает электромагнитные волны в радиодиапазоне. Природа защитила глаз человека от радиоволн. Если бы было иначе, то человек попросту бы ослеп или сошел с ума от постоянного воздействия на него «радиосвета».

Электромагнитной волной называется распространяющееся в пространстве переменное электромагнитное поле. Магнитное и электрическое поля – есть постоянно взаимосвязанные физические сущности, которые не проявляются поодиночке. Переменное магнитное поле вызывает появление переменного вихревого поля, которое, в свою очередь, вызывает появление переменного магнитного поля. Таким образом, происходит распространение возмущений в пространстве, то есть электромагнитных волн. Электрическое поле в электромагнитной волне является вихревым, силовые линии которого лежат в определенной плоскости.

Поэтому при взаимодействии двух электромагнитных волн – от мазерного источника, находящегося в космосе, и от возбужденной молекулы гидроксила, находящейся в крови человека, – всегда наблюдается первоначально образующийся вихрь, который, постепенно успокаиваясь, формирует картину интерференции или результирующую резонансную волну в материи плазмы крови. Плазма крови человека служит субстратом, в котором можно наблюдать и изучать взаимодействие данных волн. Интерференция – это сложение волн с образованием устойчивой картины максимумов и минимумов энергии.

Волна характеризуется двумя составляющими – ее скоростью и длиной, или частотой. По этим характеристикам можно установить источник волн и их приемник. Свойства волны заключают в себе качественные признаки ее источника. Мазерный источник волн считается самым совершенным источником электромагнитных волн. Его волны когерентны и монохроматичны.

Составляющие мазерный луч фотоны настолько совпадают друг с другом по частоте и направлению, что переходят один в другой практически незаметно, так что весь луч можно представить в виде одной непрерывной волны. Такое излучение называется когерентным (от англ. «сцепленный, связанный»). И в то же время мазерный луч очень однороден, поскольку состоит из абсолютно однородных фотонов. Поэтому на всем своем протяжении луч имеет один ровный цвет (правда, наш глаз его не воспринимает). Такой цвет называется монохромным.

Эти свойства мазерного луча дают возможность отличить этот источник излучения электромагнитных волн от других и получить объемное изображение объекта в виде голограммы. Интерференция мазерного источника излучения – и есть голографическая запись той молекулы, на которой работает мазерный излучатель.

Вторым основанием квантовой теории рака являются физические процессы в материи плазмы крови человека, которые наблюдаются вследствие приливных воздействий Солнца, его гравитации. Два раза в течение суток солнечная гравитация усиливается, что отражается на состоянии материи плазмы крови. Воздействие доминантной гравитационной волны несложно отследить. В этот момент из тонкого кишечника человека активнее выбрасываются в кровь вещества, что делает плазму более «пластичной». Данный феномен наблюдали и описали русские врачи еще в XIX веке, но состояние науки на тот момент не позволило им детально осмыслить эти процессы и напрямую связать их с гравитационным воздействием Солнца.

Жители океанских и морских побережий имеют возможность наблюдать периодическую смену таких природных явлений, как приливы и отливы. В определенное время суток вода вдруг начинает отступать от берега, обнажая дно. Это продолжается в течение шести часов. Затем она возвращается. Начинается прилив. Он тоже длится шесть часов. Прилив сменяется отливом. И так каждые сутки: два прилива и два отлива.

Подобное происходит и с земной корой. Она то постепенно поднимается, то столь же медленно опускается. Планета как бы дышит. Правда, мы этого движения земной коры не замечаем, но, судя по измерениям ученых, оно довольно значительно.

Давно установлено, что земные приливы возникают под влиянием гравитации Луны и Солнца. Однако приливное воздействие на Землю этих двух небесных объектов неодинаково. По сравнению с Солнцем Луна – крохотное небесное тело, но она находится значительно ближе к Земле и, казалось бы, ее влияние должно быть сильнее солнечного. В разных местах земного шара приливы и отливы имеют различные характеристики: где-то они еле заметны, а в других пунктах эти колебания достигают существенной величины.

Оказывается, земная атмосфера тоже подвержена приливному действию Луны и Солнца. В воздушном океане, так же как и в океане водном, волна прилива дважды за сутки обегает вокруг земного шара. И если у морского побережья мы видим приливное движение воды, то в воздухе возникает приливной ветер. Интересно, что скорость его в верхних слоях атмосферы намного больше, чем у поверхности Земли. Кроме горизонтального движения, происходит также перемещение воздушных масс по вертикали.

Приливы в ионосфере (в верхних слоях атмосферы) приводят к тому, что максимумы ионизации периодически смещаются то вверх, то вниз; изменяется также и электронная концентрация в слоях ионосферы.

Ввиду преобладания силы лунного притяжения над солнечным естественно ожидать, что Луна будет вызывать в атмосфере, как и в океане, более сильные приливы, чем Солнце. Однако в действительности это не так. Здесь первенство принадлежит дневному светилу. Когда ученые проследили, как меняется атмосферное давление под влиянием приливных сил Солнца, то были очень удивлены. Эти изменения оказались почти в 100 раз больше, чем следовало из теоретических расчетов. Снова загадка природы. Что же это за причина, которая в 100 раз усиливает приливное воздействие солнечного притяжения на нашу атмосферу?

Ответ пришел не сразу. Было высказано предположение, что в атмосфере происходит резонанс – интересное физическое явление, которое можно наблюдать там, где возникают колебания и волны. Рассмотрим на простом примере принцип возникновения явления резонанса.

Им бессознательно пользуются дети, когда, раскачивая качели, дают толчок в такт их колебаниям. Незначительными усилиями при этом можно добиться очень большого размаха колебаний, а затем легко поддерживать их с помощью уже слабых толчков.

Резонанс – это отклик. Раскачиваемое устройство (или какая-либо природная система) как бы откликается на толчок той частоты, с которой оно способно колебаться само, если нарушить его покой. При совпадении ритма толчков с частотой собственных колебаний системы – размах колебаний резко возрастает. Если же частота толчков не совпадает с собственной частотой, колебания будут слабыми. То же самое происходит и в воздушном океане Земли, представляющем собой единое целое. И потому, если какая-нибудь сила выводит его из равновесия, в нем возникают свободные колебания.

Так, когда мы даем толчок маятнику, он приходит в движение и начинает качаться из стороны в сторону. Атмосферу же «раскачивают» приливные силы Солнца и Луны. Но отзывается она на действие этих двух сил по-разному ввиду того, что ритмичность приливов, создаваемых каждым из небесных тел не одна и та же. Разница в ритме возникает, оттого что солнечные сутки на 50 минут 28 секунд короче лунных. И если период повторения солнечных приливов составляет 12 часов, у лунных он длится 12 часов 25 минут 14 секунд.

Чтобы проверить предположение о резонансе в атмосфере, ученым нужно было также знать, какова продолжительность периода ее свободных колебаний. Но определить эту величину оказалось не так просто.

Период свободных колебаний такого устройства, как маятник, зависит от длины нити, поэтому его длительность легко измерить и рассчитать. У воздушного же океана период свободных колебаний зависит от формы, объема, глубины и физических параметров атмосферы; учесть их влияние на период колебаний очень трудно.

Но отыскать ответ на поставленный вопрос о резонансе в атмосфере ученым все-таки удалось. Период свободных колебаний атмосферы оказался очень близким к 12 часам. Поэтому она резонирует на частоте повторения солнечных приливов и тем самым приумножает их действие. На частоте же лунных приливов, которые повторяются реже солнечных, явление резонанса не возникает, и колебания не усиливаются. Вот почему в этом своеобразном соревновании двух светил побеждает дневное. Обратим внимание на вроде бы незначительную разницу в периоде повторения солнечных и лунных прилив


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.074 с.