Повышение поражающего действия токсинов — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Повышение поражающего действия токсинов

2017-05-16 529
Повышение поражающего действия токсинов 0.00 из 5.00 0 оценок
Заказать работу

Опережающим объектом среди инсектицидных токсинов, исследование развития которого позволяет заглянуть в непубликуемые результаты аналогичных работ по рекомбинантным токсинам, опасным для людей и животных, являются порообразующие токсины семейства Cry (Bt-токсины, дельта-эндотоксины). Они продуцируются Bacillus thuringiensis (Bt) и используются в сельском хозяйстве как безопасные для окружающей среды средства контроля над численностью насекомых. По механизму действия на клетки такие токсины схожи с порообразующими токсинами стафилококков (см. рис. 4).

Cry-токсины представляют собой семейство глобулярных белков, включающее три домена, объединенных через простой линкер. Их организация типична для бинарной А-В-структуры бактериальных токсинов. Роль токсической субъединицы (А) играет порообразующий домен I; роль связывающей субъединицы (В) — домены II и III. Домен I представляет собой разветвляющуюся структуру, состоящую из 7 альфа-спиралей из которых центральная спираль (альфа 5-спираль) окружена внешними спиралями. Альфа 5-спираль высококонсервативна в пределах всего семейства Cry-токсинов. Этот домен вовлечен в формирование ионной поры в клеточной мембране эпителия кишечника насекомого. Домен II состоит из трех антипараллельных бета-слоев, упакованных вокруг гидрофобного центра, формирующего бета-структурную призму. Домен II определяет специфичность токсина и является наиболее вариабельным из его доменов. Аминокислотные остатки, вовлеченные в контакт между доменами I и II (находятся в альфа7-спирали и бета1-слое), высококонсервативны для всего семейства Cry-токсинов. Домен III сформирован двумя антипараллельными бета-слоями. Этот домен участвует в специфическом узнавании клеток-мишеней токсином. Высококонсервативны белковые последовательности, создающие контакт между доменами II и III (соответствует бета 11-слою и бета 12-слою) и образующие внутреннее пространство домена III (соответствует бета 17-слою и бета 23-слою) [16].

Рис. 6. Механизм действия Cry-токсинов и экспериментальные подходы к повышению их инсектицидной активности. 1. Кристалл токсина растворяется в среднем отделе кишечника насекомого. 2. Происходит активация прототоксина и его транслокация через перитрофную мембрану (peritrophic membrane). 3. Токсин связывается с основным рецептором и протеаза рассекает спираль α-1 домена I. 4. Происходит олигоимеризация токсина и связывание олигомера (препоры) с вторичными рецепторами. 5. Токсин (препора) вставляется в мембрану и формирует пору. Для повышения эффективности Cry-токсина в отношении насекомых, используются следующие приемы: А. К токсину добавляется хитиназа, облегчающая сборку токсина на эпителиальной мембране; Б. К токсину добавляются ингибиторы сериновых протеаз, снижающие возможность деградации токсина и рецепторов, с которыми токсин взаимодействует; В. В молекулу токсина вводится сайт расщепления, улучшающий его связывание с рецептором; Г. К токсину добавляются добавочные связывающие сайты, такие как CR12-MPE-пептид из кадхеринового рецептора или Cyt1A-токсин, улучшающие его контакт с рецепторами; Д. Из домена I удаляется участок молекулы, формирующий спираль α-1, что вызывает олигомеризацию токсина и способствует его взаимодействию с кадхерином. По [31].

Прототоксин Cry1A, синтезируемый Bt, представляет собой параспоральный (локализованный рядом со спорой) восьмигранный кристалл. Проглоченный гусеницей чешуекрылого насекомого, он растворяется в содержимом его среднего кишечника и рассекается протеазами, активируя 60 кДа мономерный токсин. Активированный токсин связывается со специфическим рецептором на поверхности клеток, выстилающих средний отдел кишечника гусеницы [16]. Рецептор индуцирует второе протеолитическое расщепление токсина, удаляющее альфа 1-цепь. После чего молекула токсина становится полностью активна и, ассоциируясь с другими такими молекулами, формирует олигомерную структуру с ММ 250 кДа — препору (prepore). Аффинитет олигомера к вторичному рецептору возрастает более чем в 200 раз по сравнению с аффинитетом отдельной субъединицы токсина. Вставка препоры в микродомены клеточной мембраны ведет к формированию полноценной литической поры и к гибели клетки [30].

Первичными рецепторами для Cry1A-токсина являются белки, сходные с кадхеринами (cadherins, CADR) — трансмембранными кальций-зависимыми гликопротеинами, осуществляющими адгезивные межклеточные контакты. Большинство кадхеринов представляют собой однократно пересекающие плазматическую мембрану гликопротеины (700–750 аминокислот). Большая внеклеточная часть полипептидной цепи обычно свернута в пять доменов (около 100 аминокислот каждый), часть из которых гомологична и содержит кальций-связывающие сайты. Внеклеточный домен, наиболее удаленный от плазматической мембраны, опосредует межклеточную адгезию. Взаимодействие Cry-токсинов с кадхерином осуществляется через комплекс связывающих сайтов: CADR7, CADR11 и CADR12 [31].

Вторичными рецепторами для Cry1A-токсина являются два протеина, «заякоренных» через мостик в мембране клетки-мишени: гликозилфосфатидилинозитол (glycosylphosphatidylinositol, GPI) и либо аминопептидаза N (aminopeptidase N, APN), либо щелочная фосфатаза (alkaline phosphatase, FAL) [14].

Отдельные насекомые имеют видовую устойчивость к Cry-токсинам, либо приобретают ее в результате систематического применения таких токсинов для регуляции их численности. В этом случае в популяциях насекомых накапливаются особи с мутировавшими кадхериновыми рецепторами, не взаимодействующими с токсином. Разработчики инсектицидных токсинов вынуждены решать две технические задачи: расширять спектр поражающего действия Cry-токсинов и увеличивать их токсичность в отношении конкретных видов насекомых. К настоящему времени разработано несколько экспериментальных подходов, позволяющих решать эти задачи (рис. 6).

Методические подходы, использованные для вмешательства в структуру молекул токсинов семейства Cry, включают сайт-направленный мутагенез отдельных доменов токсина, конструирование гибридных токсинов, внедрение в молекулу токсина сайтов для расщепления протеазами, делеции его отдельных регионов и др. (рис. 7).

Сайт-направленный мутагенез используется для изучения структуры Cry-токсинов более 20 лет. D. Wu и A. Aronson [41] описали мутацию (H168R) в спирали α-5 домена I Cry1Aa-токсина, вызывающую трехкратное возрастание его активности против личинок каролинского бражника Manduca sexta [40]. В доменах II и III токсина обнаружены мутации, увеличивающие токсичность Cry1Ab в отношении личинок отдельных видов насекомых. Так, мутации N372A или N372G, локализованные в петле 2 домена II, ведут к восьмикратному увеличению токсичности Cry1Ab по отношению к непарному шелкопряду Lymantria dispar [37]. Тройной мутант — N372A, A282G и L283S показывает 36-кратное увеличение токсичности по отношению к этим же насекомым [33] (рис. 7А). У Cry3A-токсина важную роль в связывании токсина с рецептором играет петля 1. Получены два мутанта этой петли, названные A1 и A2. Каждый мутант содержит несколько мутаций: A1 — R345A, Y350F, Y351F; A2 — R345A и делецию δY350Y35. Они показали 3- и 11-кратное увеличение токсичности против жесткокрылого насекомого — большого мучного жука (Tenebrio molitor). Мутации в петле 3 Cry3A-токсина проявили себя умеренным увеличением поражающего действия токсина (в 2,4 раза) по отношению к личинкам T. molitor [26] (рис. 7Б).

Конструирование гибридных токсинов направлено на создание новых токсинов с широким спектром целей или повышенной токсичностью. В отношении Cry-токсинов оно осуществляется посредством замены домена III на такой же домен из токсина, обладающего нужной исследователям специфичностью (рис. 7А). Отдельные Cry1-токсины с низкой специфичностью по отношению к Spodoptera exigu, включая Cry1Ab, Cry1Ac, Cry1Ba и Cry1Ea, становятся для них токсичными, если домен III будет заменен аналогичным доменом из Cry1Ca. Например, Cry1Ab-токсин не токсичен для S. exigua, но замена его III-домена на III-домен Cry1C приводит почти к десятикратному росту его токсичности для S. еxigua [17]. Замена участка молекулы Cry1Aa-токсина в пределах аминокислотных остатков 450–612 (домен III) на такие же из Cry1Ac-токсина, ведет к 300-кратному увеличению токсичности Cry1Aa в отношении табачной огневки Heliothis virescens [15, 31].

Активация токсинов в новом для него хозяине может быть достигнута внедрением в его молекулу сайта для расщепления протеазами. Вставка в петлю Cry3A-токсина между спиралью α-3 и спиралью α-4 сайта для хемотрипсин/катепсина (chymotrypsin/cathepsin G-сайта), позволило в три раза увеличить его токсичность для личинок D. virgifera [39] (см. рис. 7Б).

Делеция в аминотерминальном регионе, включающая спираль α-1 Cry1A-токсина, делает возможной олигомеризацию токсина в отсутствие кадхеринового рецептора. Такие модифицированные токсины (Cry1AMod) убивают насекомых, у которых развилась резистентность к Cry1A-токсинам, вызванная мутациями в гене кадхерина. Олигомерные структуры, формируемые Cry1AMod-токсинами, обладают пороформирующей активностью, сходной с таковой у природного («дикого») токсина (см. рис. 7А).

Токсичность Cry2-токсина была повышена для египетской хлопковой совки (Spodoptera littoralis) и совки ипсилон (Agrotis ipsilon) не менее чем в четыре раза делецией 42 аминокислот из N-концевого региона молекулы, предшествующих аминокислотным последовательностям, формирующим α-1 спираль. Этот участок молекулы прототоксина в кишечнике насекомого отщепляется трипсином, после чего «обнажается» прежде закрытый регион токсина, соответствующий связывающему региону Cry2-токсина [29] (см. рис. 7В).

Иммунотоксины

Как частный случай гибридного токсина могут рассматриваться иммунотоксины — химерные белки, включающие два домена, один из которых обладает свойствами антитела, а другой свойствами ферментативной субъединицы токсина. Первый домен обеспечивает связывание химерного белка со специфической молекулой или клеткой, второй инактивирует молекулу-мишень или убивает клетку.

Иммунотоксины — первое поколение МИБП, полученных на основе производных бактериальных токсинов, не имеющих аналогов в природе. Появление иммунотоксинов вызвано трудностями прицельного терапевтического воздействия на злокачественно переродившиеся клетки крови. Первым таким средством были немеченые мАт, индуцировавшие апоптоз клеток-мишеней после взаимодействия с их рецепторами или вызывавшие их гибель по другим механизмам (rituximab и alemtuzumab). Однако в процессе клинических испытаний выяснилось, что более чем у половины пациентов раковые клетки устойчивы к действию мАт. Тогда их стали конъюгировать с радионуклидами. Эти агенты оказались эффективными для лечения пациентов со злокачественными новообразованиями, резистентными к мАт, но не могли использоваться широко из-за их дозозависимой токсичности для клеток костного мозга. Третий тип препаратов для прицельного терапевтического воздействия на злокачественные клетки представлял собой мАт с конъюгированными химиопрепаратами. Они оказались более эффективными и вызывали меньшее количество неспецифических осложнений при лечении острой миелоидной лейкемии (acute myelogenous leukemia, AML), чем мАт, конъюгированные с радионуклеотидами. Но и к ним были обнаружены резистентные опухолевые клетки, что потребовало дальнейшего совершенствование препаратов, действующих через специфическое узнавание рецепторов на поверхности опухолевых клеток [21].

Рис. 7. 3D-модели токсинов семейства Cry с модифицируемыми участками. А. Токсин Cry1A. Стрелками показаны точечные мутации в доменах I и II. Делетированный N-концевой регион обозначен черным цветом (Cry1AMod-токсин). Мутации N372A или N372G, локализованные в петле 2 домена II, ведут к восьмикратному увеличению токсичности по отношению к Lymantria dispar. Тройной мутант — N372A, A282G и L283S — показывает 36-кратное увеличение токсичности. Б. Токсин Cry3A. Стрелками показаны точечные мутации в домене II, улучшающие его инсектицидную активность. Созданный протеолитический сайт, включенный в домен I, показан черным цветом. В. Токсин Cry2A. Черным цветом показан N-концевой регион токсина, делетированный для улучшения его инсектицидной активности. По [31].

Способность иммунотоксинов к прицельному уничтожению раковых клеток начинается с одной молекулы ферментативной субъединицы токсина, доставленной к поверхности клетки-мишени специфическим антителом. Поэтому иммунотоксины представляют собой некий предел в развития таких средств терапии злокачественных опухолей крови. В качестве ферментативной молекулы при конструировании иммунотоксинов используют ферментативные субъединицы (домены) токсинов, блокирующие белковый синтез в клетках. Среди растительных токсинов наиболее часто используются рицин и абрин; среди бактериальных — одноцепочечные токсины: дифтерийный и экзотоксин псевдомонад.

Разработчики иммунотоксинов учитывают то обстоятельство, что обе субъединицы токсина содержат большое количество карбоксильных групп, связывающих их с неизмененными тканями, и, в частности, с тканями печени и почек. Поэтому прежде чем конъюгировать их с антителом, субъединицы дегликозилируют различными способами (получая рекомбинантные формы токсина в кишечной палочке, химическим путем и др.).

Оптимальным объектом для лечения иммунотоксинами являются опухолевые заболевания системы крови. Злокачественные клетки расположены внутри сосудов и доступны для препарата при внутривенном введении. К тому же иммунная система таких пациентов часто утрачивает способность к эффективному антительному ответу на сам иммунотоксин. Конструирование иммунотоксинов, используемых в медицинских целях, предполагает повышение их специфичности именно к опухолевым клеткам и как можно большую их безопасность для клеток нормальных тканей. В клинике токсичность таких препаратов оценивают по так называемой максимальной переносимой дозе (maximum tolerated dose, MTD). Признаки ее превышения неспецифические: астения, подъем уровня печеночных трансаминаз в крови, гипотензия. При появлении таких симптомов дозу препарата снижают. При более высокой дозе иммунотоксина у пациента может развиться синдром пропускания сосудов (vascular leak syndrome, VLS; Clarkson syndrome), вызванный высвобождением цитокинов после гибели периваскулярных Т-клеток. Основные симптомы: гипотензия, гипоальбуминемия без альбуминурии, генерализованный отек, низкий гематокрит. Количества иммунотоксинов, вызывающих осложнения, находятся в пределах десятков мкг на кг веса пациента [21].

Рис. 8. График токсоиды по Н.С. Антонову. Максимальная токсичность «супертоксинов» достигается за счет предельного увеличения размеров и сложности их молекул.

Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.