Тема 2. Аналитическая геометрия — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Тема 2. Аналитическая геометрия

2017-12-13 200
Тема 2. Аналитическая геометрия 0.00 из 5.00 0 оценок
Заказать работу

Пример 1. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А.

Получаем: 3 – 2 + C = 0, следовательно С = -1.

Итого: искомое уравнение: 3х – у – 1 = 0.

Пример 2. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Применяя уравнение прямой, проходящей через 2 точки, получаем:

Пример 3. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:

1×A + (-1)×B = 0, т.е. А = В.

 

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C/A = 0.

при х = 1, у = 2 получаем С/A = -3, т.е. искомое уравнение:

х + у - 3 = 0

 

Пример 4. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

 

Пример 5. Дано общее уравнение прямой 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой прямой.

уравнение этой прямой в отрезках:

уравнение этой прямой с угловым коэффициентом: (делим на 5)

нормальное уравнение прямой:

 

; cosj = 12/13; sinj = -5/13; p = 5.

Пример 6. Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 см2.

 

Уравнение прямой имеет вид: , a = b = 1; ab/2 = 8; a = 4; -4.

a = -4 не подходит по условию задачи.

Итого: или х + у – 4 = 0.

 

Пример 7. Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат.

 

Уравнение прямой имеет вид: , где х1 = у1 = 0; x2 = -2; y2 = -3.

 

Пример 8. Определить угол между прямыми: y = -3x + 7; y = 2x + 1.

k1 = -3; k2 = 2 tgj= ; j = p/4.

 

Пример 9. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k1 = 3/5, k2 = -5/3, k1k2 = -1, следовательно, прямые перпендикулярны.

 

Пример 10. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.

Находим уравнение стороны АВ: ; 4x = 6y – 6;

2x – 3y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.

k= . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3x + 2y – 34 = 0.

Раздел 3. Математический анализ

ТЕМА 1. Пределы функций

Для определения пределов последовательностей и функций используются некоторые известные приемы:

1. Если необходимо найти предел

,

можно предварительно привести к общему знаменателю

.

Поделив на член, имеющий максимальную степень, получим в числителе постоянную величину, а в знаменателе – все члены, стремящиеся к 0,то есть

.

2. Аналогично, для примера

3. в этом пределе, если подставить x=a, то получится неопределенность, которую можно преодолеть, если разложить разность кубов в знаменателе , а числитель в виде: .

Тогда и подставив x=a, получим: ;

4. , при подстановке х=0, получим .

5. Однако, если необходимо найти предел рациональной функции

, то при делении на член с минимальной степенью, получим

; и, устремив х к 0, получим:

Если в пределах содержатся иррациональные выражения, то приходится вводить новые переменные для получения рационального выражения, или же переводить иррациональности из знаменателя в числитель и наоборот.

6. ; Сделаем замену переменной. Заменим , при , получим .

7. . Если числитель и знаменатель умножить на одно и то же число, то предел не изменится. Умножим числитель на и разделим на это же выражение, чтобы предел не изменился, а знаменатель умножим на и разделим, на это же выражение. Тогда получим:

Для определения пределов часто используются замечательные пределы:

; (1)

. (2)

8. .

Для вычисления такого предела сведем его к 1-му замечательному пределу (1). Для этого умножим и разделим числитель на , а знаменатель на , тогда .

9. Для вычисления этого предела сведем его ко второму замечательному пределу. С этой целью из рационального выражения в скобках выделим целую часть и представим ее в виде правильной дроби. Так поступают в тех случаях, когда , где , а , где ;

 

, а , то окончательно . Здесь использовалась непрерывность композиции непрерывных функций.

ТЕМА 2. Производная

 

Производной от функции называется конечный предел отношения приращения функции к приращению аргумента, когда последнее стремится к нулю:

, или .

Геометрически производная представляет собой угловой коэффициент касательной к графику функции в точке х, то есть .

Производная есть скорость изменения функции в точке х.

Отыскание производной называется дифференцированием функции.

Формулы дифференцирования элементарных функций:

 

 

 
 


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.023 с.