Основные аффинные и метрические задачи — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Основные аффинные и метрические задачи

2017-11-21 625
Основные аффинные и метрические задачи 0.00 из 5.00 0 оценок
Заказать работу

 

Задача называется метрической, если в ней фигурируют метрические свойства фигур, т.е. свойства, которые можно выявить непосредственным измерением (длина отрезка, расстояние между точками, расстояние от точки до прямой или плоскости, величина угла, перпендикулярность, площадь, объем). В аффинных задачах метрические свойства не рассматриваются. Аффинные задачи решаются в аффинной системе координат, а, следовательно, и в прямоугольной декартовой. Метрические задачи удобно решать в прямоугольной системе координат.

Основные аффинные и метрические задачи, решаемые с помощью координат, сформулируем в виде теорем.

Основные аффинные задачи

1. Координаты вектора, заданного двумя точками.

Теорема 1. Если в аффинной системе координат и , то .

Представим вектор в виде разности векторов и :

.

Так как , то по определению координат точки . Аналогично . Применяя свойство координат векторов (координаты разности двух векторов равны разности их соответствующих координат), получаем, что вектор имеет координаты Þ .

2. Деление отрезка в данном отношении.

Говорят, что точка М делит направленный отрезок в отношении , если выполняется векторное равенство:

. (1)

Число при этом называется простым отношением трех точек М1, М2 и М. Простое отношение трех точек М1, М2 и М обозначается так: .

Почему в определении деления отрезка в данном отношении ?

Пусть М1 М2 и точка М делит направленный отрезок в отношении l=-1. Тогда по определению деления отрезка в данном отношении

,

т.е. Þ Þ . А так как начало у векторов и общее и они равны, то М12. Получили противоречие с условием, следовательно, .

Из векторного равенства (1) следует, что если , то , т.е. точка М совпадает с точкой М1; если l>0, то точка М лежит внутри отрезка (рис. 37), т.е. ; если l<0, то точка М лежит на прямой вне отрезка (рис. 38), т.е. или .

М1
М
М2
Рис. 37
М
М1
М2
М2
М1
М
Рис. 38

 


Теорема 2. Пусть в аффинной системе координат , . Тогда координаты точки , делящей направленный отрезок в отношении , находятся по формулам:

; ; . (2)

По определению деления отрезка в данном отношении .

О
М1
М
М2
Рис. 39
По теореме 1 , . Тогда . Так как два вектора равны тогда и только тогда, когда равны их соответствующие координаты, то ; ;

, откуда получаем: ; ; .

Формулы (2) называются формулами деления отрезка в данном отношении в координатах.

Из теоремы 2 получаем

Следствие. Если М(х;у;z) – середина отрезка М1М2 с концами и , то , , .

Так как М – середина М1М2, то Þl=1. Применяя формулы деления отрезка в данном отношении в координатах, получаем:

, , .

Основная метрическая задача

Теорема 3(расстояние между двумя точками в координатах). Если в прямоугольной декартовой системе координат , , то расстояние АВ между точками А и В находится по формуле:

.

Учитывая, что , и используя формулы для нахождения длины вектора в координатах, получаем:

.

Формулы, доказанные в теоремах 1 и 2, можно использовать и в аффинной, и в прямоугольной декартовой системе координат, а формулу из теоремы 3 – только в прямоугольной декартовой системе координат.

 

Формулы преобразования координат

§12. Преобразование аффинной системы координат

 

 

О
О'
М
Рис. 40
Возьмем на плоскости две аффинные системы координат и . Первую назовем старой, вторую - новой. Пусть М – произвольная точка плоскости, которая в старой системе имеет координаты х,у, а в новой системе - координаты (рис. 40).

Задача преобразования координат состоит в следующем: зная координаты нового начала и новых координатных векторов в старой системе:

, , , (3)

выразить координаты х,у точки М в старой системе координат, через координаты этой точки в новой системе.

Из формул (3) следует, что

; ; . (4)

(по правилу треугольника).

Так как , , то по определению координат точки , , т.е. ; .

Тогда, используя формулы (4), получим:

,

т.е. ,

откуда находим:

 
(5)
;

. Так выражаются координаты х,у произвольной точки М в старой системе через ее координаты в новой системе .

Формулы (5) называются формулами преобразования аффинной системы координат.

Коэффициенты , при - координаты нового вектора в старой системе ; коэффициенты , при - координаты нового вектора в старой системе, свободные члены , - координаты нового начала в старой системе:

Координаты точки М

в новой системе

х
у
=
=
+
+
+
+
Координаты точки М в старой системе
Координаты нового вектора в старой системе
Координаты нового вектора в старой системе
Координаты нового начала в старой системе

 

 

 


Таблица называется матрицей перехода от базиса , к базису , .

Частные случаи преобразования аффинной

Системы координат

1. Перенос начала.

При этом преобразовании , , а (рис. 41).

Найдем координаты векторов и в старой системе, т.е. , , и :

Þ Þ , ;

Þ Þ , .

Тогда формулы (5) примут вид:

 

(6)

 

 

Формулы (6) называются формулами переноса начала.

О
О'
Рис. 41
О'=О
Рис. 42

 

 


2. Замена координатных векторов.

При этом преобразовании системы координат имеют общее начало и отличаются координатными векторами (рис. 42).

Так как , то , . Тогда формулы (5) примут вид:

 

  ; .

(7)

 

 

Формулы (7) называются формулами замены координатных векторов.

 


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.055 с.