Ольфакторные рецепторы и трансмембранные белки — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Ольфакторные рецепторы и трансмембранные белки

2022-12-29 27
Ольфакторные рецепторы и трансмембранные белки 0.00 из 5.00 0 оценок
Заказать работу

 

Настало время представить вам ведущих персонажей ольфакторной сцены и попробовать разобраться в их структуре. Ольфакторные рецепторы – это белки, состоящие из немногим более 300 аминокислот и содержащие семь гидрофобных сегментов, проникающих через клеточную мембрану, подобно родопсину, β-адренэргическому и другим рецепторам. Концевая аминогруппа цепочки (считающаяся начальной точкой отсчета) находится снаружи, в экстраклеточном пространстве, а карбоксильный конец – внутри.

Клеточная мембрана (для тех, кто не знаком с ее структурой) представляет собой двойной слой фосфолипидов. Это такие странные соединения, имеющие гидрофобный хвостик, который состоит из двух длинноцепочных жирных кислот и гидрофильной головки – молекулы фосфорной кислоты, связанной с какой-нибудь маленькой органической молекулой вроде холина. Эти три кислоты удерживает вместе молекула глицерола. Они в чем-то похожи на триглицериды – молекулы, из которых состоит большинство съедобных жиров, таких как растительные и животные масла (в них молекула глицерола привязана к трем жирным кислотам).

Однако из-за присутствия в той же молекуле группы фосфорной кислоты и длинной цепочки жирной кислоты фосфолипиды ведут себя довольно интересно: они одновременно гидрофильны (из-за фосфорной головки) и гидрофобны (из-за жирнокислотного хвостика). В водной среде эти молекулы легко организуются в двойной слой, где головки взаимодействуют с водой, а хвостики – друг с другом (см. рис. 27). Фрагменты такой пленки имеют свойство сворачиваться в шарики, разграничивая закрытое внутреннее пространство и открытое внешнее, причем и там и там содержится вода. Между собой они коммуницировать не могут, так как их разделяет липидный барьер. Примерно так возникли первые клетки, что стало огромным шагом вперед в эволюции жизни на Земле. Именно мембрана дает клетке самостоятельное, обособленное бытие. Клетка по определению представляет собой отъединенное физическим барьером образование, способное к самоумножению.

Однако клеточная мембрана – более сложное и богатое функциями явление; этим простым определением она не исчерпывается. Белки (и наши ольфакторные рецепторы в том числе) сидят на стене этого маленького укрепленного города и проверяют каждого приближающегося гостя, посылая внутрь рапорты. Далее ворота открываются или закрываются сообразно химическим инструкциям, пропуская ионы и прочие молекулы.

 

Структура ольфакторных рецепторов

 

Ольфакторные рецепторы взаимодействуют с этим липидным барьером, проходя его семь раз туда и обратно – внутрь клетки и наружу (рис. 27). Именно поэтому в тех местах, где они взаимодействуют с мембраной, у них находятся гидрофобные аминокислоты. Тут все завязано на растворимость. Полярные соединения лучше растворяются в воде; жиры – в масле или в органических растворителях. Сегменты белковой цепочки, особенно богатые гидрофобными аминокислотами, узнать легко: они, скорее всего, будут проходить через клеточную мембрану. Это дает возможность сосчитать количество таких трансмембранных областей и отнести белок к тому или иному классу. Поэтому даже такая простая информация, как аминокислотная последовательность, уже может открыть нам какие-то характеристики неидентифицированного белка. В нынешнюю эру геномов это чрезвычайно важно, так как данные о секвенции мы сейчас получаем задолго до того, как можем выдвинуть гипотезу о физиологическом назначении белка.

Но давайте вернемся к структуре ольфакторных рецепторов и попробуем разобраться, как им удается распознавать молекулы разных пахучих веществ. Все рецепторы, принадлежащие к семейству 7-ТМ, обладают похожей компактной структурой. До сих пор нам удалось в экспериментальном порядке разрешить только трехмерную форму родопсина и пары других рецепторов, так что все остальные модели носят гипотетический характер и основываются на том, что мы знаем о родопсине. В общем и целом он состоит из семи сегментов в виде α-спиралей, пересекающих мембрану и упакованных вместе, как пачка карандашей. Они связаны между собой петлями неупорядоченных структур, попеременно погружающихся то в интраклеточную, то в экстраклеточную жидкость. Плотная упаковка семи спиралей тем не менее оставляет внутри канал, в котором, как считают исследователи, улавливаются и распознаются молекулы пахучего вещества.

Во всяком случае, там оказывается перманентный лиганд родопсина – ретиналь. Ретиналь – это альдегид из 20 атомов углерода, обладающий довольно сложной архитектурой, воспроизводящей половину структуры β-каротина, пигмента, часто встречающегося в растениях. Из-за большого количества переменных двойных связей он может поглощать свет в видимой области спектра. Когда это происходит, цепочка ретиналя закручивается вокруг одной из двойных связей. Поскольку ретиналь прочно соединен с молекулой родопсина ковалентной связью, подобный оборот вызывает конформационные изменения в белке, который продуцирует такую же метаморфозу внутри клетки, взаимодействуя с G-белком. На рисунке 26 показана структура родопсина и две формы ретиналя.

 

Рисунок 26. Две проекции коровьего родопсина, связанного с молекулой ретиналя. Ретиналь изомеризируется из полностью-транс-формы в 11-цис-форму под воздействием фотона света. Это вызывает конформационные изменения в родопсине, который в результате порождает в клетке электрический сигнал.

 

Хотя родопсин и ольфакторные рецепторы совершенно различны по функциям (первый регистрирует свет, а вторые – летучие молекулы), механизм действия у них более-менее одинаков.

Рецепторы одорантов чувствуют присутствие посторонней молекулы, взаимодействуя с ее сердцевиной и меняя ее конформацию; родопсин, в свою очередь, регистрирует оборот, вызванный светом в молекуле ретиналя, и меняет свою конформацию. Родопсин в этой ситуации выступает в роли химического сенсора – если считать две формы ретиналя двумя разными молекулами, что вполне обоснованно.

 


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.