Александр Григорьевич Столетов — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Александр Григорьевич Столетов

2022-10-28 34
Александр Григорьевич Столетов 0.00 из 5.00 0 оценок
Заказать работу

 

 

(1839–1896)

 

Александр Григорьевич Столетов родился 29 июля (10 августа) 1839 года в семье небогатого владимирского купца. Его отец, Григорий Михайлович, владел небольшой бакалейной лавкой и мастерской по выделке кож. В доме была неплохая библиотека, и Саша, научившись читать в четырёхлетнем возрасте, стал рано ею пользоваться. В пять лет он уже читал совершенно свободно.

Александр рос хрупким болезненным мальчиком, и чтение стало его любимым занятием. Ещё в детстве он познакомился с произведениями Пушкина, Лермонтова, Гоголя, Жуковского и других русских писателей. Под их влиянием он начинает писать стихи, приуроченные к различным семейным торжествам. Позже, в гимназии, вместе с товарищами он выпускает рукописный журнал, где публикует автобиографическую повесть «Мои воспоминания».

Кроме Саши, в семье было ещё пятеро детей. Под влиянием старшего брата Николая Саша начинает изучать французский язык и вскоре незаметно для себя вполне прилично читает и говорит на нём. Вместе со старшей сестрой Варенькой занимается музыкой и увлекается ею настолько, что начинает подумывать, не стать ли ему профессиональным музыкантом. Музыка стала доброй спутницей Столетова на всю жизнь. Часто он отдыхал за роялем после трудной лекции или напряжённой работы в лаборатории.

В 1849 году Александр поступил во владимирскую гимназию, которую окончил в 1856 году. В последние годы учёбы в гимназии чётко определились наклонности Александра. Его любимые предметы — математика и особенно физика.

Осенью того же 1856 года Столетова зачисляют на физико-математический факультет Московского университета «казённокоштным» студентом, т. е. получающим государственную стипендию.

Столетов живёт бедно, денег мало, но, несмотря на это, он весьма неохотно соглашается на частные уроки и переводы, справедливо полагая, что эти дополнительные занятия отвлекают его от науки. Всё время принадлежит и отдано только ей!

Выдающиеся научные способности Александра, его большая любовь к знаниям были замечены и оценены преподавателями. В 1860 году Столетов с отличием оканчивает университет, и сразу же руководство факультета начинает хлопотать об оставлении молодого кандидата при университете. Но на просьбу приходит отказ.

Только 5 сентября 1861 года наконец приходит долгожданное разрешение. За истёкшее время Столетов успел подготовиться к магистерскому экзамену, и 16 октября подаёт прошение ректору. Экзамен сдан успешно, но защита диссертации неожиданно откладывается. Профессора К. А. и С. А. Рачинские пожертвовали университету стипендию для посылки в заграничную командировку на два года достойного кандидата. Выбор пал на Столетова, и летом 1862 года он покидает Москву.

За границей Александр пробыл три года. Он учился в Гейдельберге, Гёттингене и Берлине у Кирхгофа, Гельмгольца, Вебера, Магнуса и других известных учёных. Учился как всегда самозабвенно. Кирхгоф называл Столетова самым талантливым своим учеником.

За границей Александр Григорьевич выполнил свою первую научную работу. Вместе с К. А. Рачинским он попробовал установить, влияют ли диэлектрические свойства среды, в которую погружены магниты или проводники электрического тока, на взаимодействие между ними. Результат получился отрицательный. Исследователи установили, что диэлектрические свойства среды никак не сказываются на величине электромагнитного взаимодействия.

В декабре 1866 года Столетов возвращается на родину, а в следующем году получает место преподавателя математической физики и физической географии в Московском университете. Студентам нравится новый молодой педагог. Лекции Столетова были насыщены множеством интересных фактов, помогающих объяснить неясные, спорные моменты, полнее раскрыть тему сообщения.

Наконец, Столетов берётся за свою магистерскую диссертацию. Она посвящена «общей задаче электростатики», над решением которой бились многие учёные. Смысл её в следующем.

Если к незаряженному проводнику поднести другой проводник, заряженный, например, отрицательно, то на первом проводнике появятся заряды: на ближайшей к заряженному телу стороне — положительные, на противоположной — отрицательные. Эти индуцированные заряды в свою очередь подействуют на заряженный проводник, и заряды на нём перераспределятся. Это перераспределение зарядов вызовет в свою очередь изменение распределения зарядов на другом проводнике и т. д. Так будет продолжаться до тех пор, пока между двумя проводниками не установится электростатическое равновесие. Эта задача очень сложна и справиться с ней удалось лишь двум учёным — Морфи и Дж. Томсону. Столетов же хотел решить её в самом общем виде: в случае взаимодействия любого произвольного числа проводников.

И он решил эту задачу. В мае 1869 года Столетов блестяще защитил магистерскую диссертацию и был утверждён в звании доцента.

Бессонные ночи, чрезмерный труд и нервное напряжение сказываются на здоровье молодого учёного. Он заболевает и около года проводит в различных лечебницах. Ему запрещают читать, писать, заниматься какой бы то ни было умственной деятельностью. Это был самый тягостный период в жизни Столетова. Наконец, консилиум профессоров разрешает ему приступить к занятиям со студентами. И сразу же забываются все рекомендации врачей щадить своё здоровье, Александр Григорьевич вновь полностью отдаётся педагогической и научной деятельности.

В то время Московский университет, как и другие высшие учебные заведения России, не имел физической лаборатории. Чтобы вести научные исследования, русские учёные были вынуждены уезжать за границу. Столетов поставил перед собой цель создать такую лабораторию. Весь 1870 год проходит в хлопотах по устройству первой в России физической лаборатории.

Занятия наукой отнимают у Александра Григорьевича всё имеющееся в его распоряжении время. Он так и остался на всю жизнь холостым.

В 1871 году Столетов приступает к работе над докторской диссертацией. Теперь его интересуют магнитные свойства железа. Знать их очень важно для практики. Электротехника в то время не была ещё наукой. Созданию хорошей электрической машины предшествовали бесчисленные опыты по подбору оптимальных размеров конструкции. И одной из важнейших задач электротехники было узнать, как намагничивается железо.

Пока не готова лаборатория, Столетов уезжает за границу. Всего четыре месяца проводит он в лаборатории Кирхгофа в Гейдельберге, но многое успевает при этом. Он продумывает и конструирует установку для исследования магнитных свойств железа, проводит все задуманные опыты. Полученные Столетовым важные результаты давали в руки создателей электромоторов и динамо-машин ключ к решению многих стоящих перед ними задач.

В 1872 году Столетов успешно защищает докторскую диссертацию «Исследование о функции намагничения мягкого железа» и в следующем году утверждается в должности ординарного профессора Московского университета.

Осенью 1872 года происходит другое знаменательное событие: наконец-то при университете открывается физическая лаборатория, на устройство которой Столетов потратил столько сил и средств. Это была первая в России учебно-исследовательская физическая лаборатория. Теперь русским учёным не надо было ездить за границу, чтобы проводить необходимые опыты!

Начинает свою первую экспериментальную работу на родине и Столетов. Он ставит давно задуманный опыт по определению соотношения между электростатическими и электромагнитными единицами. Коэффициент пропорциональности оказывается близким к скорости света. Это говорит не только о том, что свет — это тоже электромагнитное явление, но и служит косвенным подтверждением справедливости теории Максвелла, которую многие учёные в то время не признавали.

Столетов широко открывает двери своей лаборатории для физиков, работающих в других высших учебных заведениях России. Александр Григорьевич ведёт большую популяризаторскую работу в Обществе любителей естествознания, непременным членом которого он является, читает публичные лекции в Политехническом музее, публикует научно-популярные статьи в журналах для неспециалистов. Он хочет приобщить к науке как можно большее количество людей.

После его работы о «Функции намагничения железа» имя Столетова становится широко известно за границей. В 1874 году его приглашают на торжества по случаю открытия при Кембриджском университете физической лаборатории. В 1881 году Столетов достойно представляет русскую науку на Первом всемирном конгрессе электриков в Париже. Он первый русский физик, участвующий на международном съезде.

На конгрессе Столетов делает доклад о своих исследованиях по определению коэффициента пропорциональности между электростатическими и электромагнитными единицами, активно участвует в работе по выбору электротехнических единиц измерения. По предложению нашего учёного была утверждена единица электрического сопротивления ом и эталон сопротивления.

В 1888 году Александр Григорьевич начинает исследование фотоэффекта, открытого за год до этого Герцем. Эти исследования принесли Столетову мировую известность. Они продолжались два года: с февраля 1888 по июль 1890 года и можно только удивляться, как много было сделано за этот срок человеком, занятым в основном преподавательской деятельностью.

Повторив опыты Герца, Видемана, Эберта и Гальвакса, в дальнейшем Александр Григорьевич разработал новую методику, позволившую построить количественную теорию фотоэффекта.

С помощью разработанной им установки Столетов изучал различные стороны фотоэффекта. На основании результатов своих экспериментов он делает следующие выводы: необходимым условием фотоэффекта является поглощение света материалом катода; каждый элемент поверхности катода участвует в явлении независимо от других; явление фотоэффекта практически безынерционно. Меняя напряжение на электродах, Столетов получает вольтамперную характеристику фотоэлемента: фототок возрастает с увеличением напряжения между электродами, а малые токи пропорциональны напряжению; начиная с некоторого значения напряжения фототок практически не меняется при увеличении напряжения, т. е. фототок стремится к насыщению.

Будучи уверенным в том, что величина фототока определённо связана с освещением, Столетов проводит серию опытов с целью установить эту зависимость. Меняя силу света источника, он нашёл, что величина фототока насыщения пропорциональна световому потоку, падающему на катод.

В своих опытах учёный вплотную подошёл к установлению законов электрических разрядов в газах. Теорию таких явлений построил английский физик Таунсенд, использовав полученные Столетовым результаты. Таунсенд дал открытому Столетовым закону о зависимости силы тока несамостоятельного разряда от давления название «эффект Столетова», под которым он и вошёл в мировую научную литературу. Когда в 1889 году Столетов приехал в Париж на II международный конгресс электриков, учёные всех стран чествовали его как одного из самых выдающихся физиков современности.

В начале 1893 года трое академиков, Чебышёв, Бредихин и Бекетов, выдвигают Столетова в члены высшего научного учреждения страны. Несмотря на мировую известность учёного, президент академии великий князь Константин не допускает кандидатуру Столетова до баллотировки. Возмущённый брат Александра Григорьевича, Николай, генерал и герой Шипки, спрашивает у президента академии, почему он самолично вычеркнул из списков кандидатов фамилию Столетова. «У вашего брата невозможный характер», — с раздражением отвечает великий князь.

Несмотря на сочувствие друзей, Столетов тяжело переживает нанесённое ему оскорбление. Да и университетское начальство всё больше и больше начинает выказывать ему свою немилость. Всё это сильно отражается на здоровье Александра Григорьевича. Его мучает кашель, бессонница, ему все трудные и труднее выходить из дома. В 55 лет в результате непрерывной травли он становится больным стариком.

В начале 1896 года Столетов переносит тяжёлое рожистое воспаление. Едва оправившись от него, он снова заболевает. Болезни терзают ослабленный организм, и в ночь с 14 на 15 (27) мая Александр Григорьевич умирает от воспаления лёгких.

Значение Столетова как учёного для русской и мировой науки огромно. Он создал первую в России учебно-исследовательскую физическую лабораторию, основал школу русских физиков, сделал множество открытий.

На основе изученного Столетовым явления фотоэффекта были созданы фотоэлементы, которые получили повсеместное применение. Вакуумная установка Столетова для изучения электрических явлений в разреженных газах явилась прообразом электронной лампы, которая совершила подлинную революцию в электротехнике.

 

РОБЕРТ КОХ

 

 

(1843–1910)

 

Немецкий врач и бактериолог Генрих Герман Роберт Кох родился 11 декабря 1843 года в Клаусталь-Целлерфельде. Его родителями были Герман Кох, работавший в управлении шахт, и Матильда Юлия Генриетта Кох (Бивенд). В семье было 13 детей, Роберт был третьим по возрасту ребёнком. Развитой не по годам, Роберт рано начал интересоваться природой, собрал коллекцию мхов, лишайников, насекомых и минералов. Его дедушка, отец матери, и дядя были натуралистами-любителями и поощряли интерес мальчика к занятиям естественными науками. Когда в 1848 году Роберт поступил в местную начальную школу, он уже умел читать и писать. Он легко учился и в 1851 году поступил в гимназию Клаусталя. Через четыре года он уже был первым учеником в классе, а в 1862 году закончил гимназию.

Сразу по окончании гимназии Роберт поступил в Гёттингенский университет, где в течение двух семестров изучал естественные науки, физику и ботанику, а затем начал изучать медицину. Важнейшую роль в формировании интереса Коха к научным исследованиям сыграли многие его университетские преподаватели, в т. ч. анатом Иаков Генле, физиолог Георг Мейсенер и клиницист Карл Гассе. Эти учёные принимали участие в дискуссиях о микробах и природе различных заболеваний, и молодой Кох заинтересовался этой проблемой.

В 1866 году Роберт получил медицинский диплом. В 1867 году Кох женился на Эмме Адельфине Жозефине Фрац. У них родилась дочь. Роберт хотел стать военным врачом или совершить кругосветное путешествие в качестве корабельного доктора, однако такой возможности у него не было. В конечном счёте Кох обосновался в немецком городе Раквице, где начал врачебную практику в должности ассистента в больнице для умалишённых, и вскоре стал известным и уважаемым врачом. Однако эта работа Коха была прервана, когда в 1870 года началась франко-прусская война.

Несмотря на сильную близорукость, Роберт добровольно стал врачом полевого госпиталя и здесь приобрёл большой опыт в лечении инфекционных болезней, в частности, холеры и брюшного тифа. Одновременно он изучал под микроскопом водоросли и крупные микробы, совершенствуя своё мастерство в микрофотографии.

В 1871 году Кох демобилизовался и в следующем году был назначен уездным санитарным врачом в Вольштейне (ныне Вольштын в Польше). Жена подарила ему на двадцативосьмилетие микроскоп, и с тех пор Роберт целые дни проводил у микроскопа. Он потерял всякий интерес к частной практике и стал вести исследования и опыты, заведя для этой цели настоящее полчище мышей.

Кох обнаружил, что в окрестностях Вольштейна распространена сибирская язва, эпидемическое заболевание, которое распространяется среди крупного рогатого скота и овец, поражает лёгкие, вызывает карбункулы кожи и изменения лимфоузлов. Кох знал об опытах Луи Пастера с животными, больными сибирской язвой, и тоже решил понаблюдать за бактериями сибирской язвы. С помощью микроскопа он проследил весь жизненный цикл бактерий, увидел, как из одной палочки возникают миллионы.

Проведя серию тщательных, методичных экспериментов, Кох установил бактерию, ставшую единственной причиной сибирской язвы. Он доказал также, что эпидемиологические особенности сибирской язвы, т. е. взаимосвязь между различными факторами, определяющими частоту и географическое распределение инфекционного заболевания, обусловлены циклом развития этой бактерии. Исследования Коха впервые доказали бактериальное происхождение заболевания. Его статьи по проблемам сибирской язвы были опубликованы в 1876 и 1877 годах при содействии ботаника Фердинанда Кона и патолога Юлия Конгейма в университете Бреслау. Кох опубликовал также описание своих лабораторных методов, в т. ч. окраски бактериальной культуры и микрофотографирования её строения. Результаты исследований Коха были представлены учёным лаборатории Конгейма.

Открытия Коха сразу принесли ему широкую известность, и в 1880 году он, в значительной мере благодаря усилиям Конгейма, стал правительственным советником в Имперском отделении здравоохранения в Берлине. В 1881 году Кох опубликовал работу «Методы изучения патогенных организмов», в которой описал способ выращивания микробов в твёрдых средах. Этот способ имел важное значение для изолирования и изучения чистых бактериальных культур. В это время развернулась острая дискуссия между Кохом и Пастером, лидерство которого в микробиологии было поколеблено работами Коха. После того как Кох опубликовал резко критические отзывы о пастеровских исследованиях, касающихся сибирской язвы, между двумя выдающимися учёными вспыхнула нелицеприятная дискуссия, продолжавшаяся несколько лет, которую они вели как на страницах журналов, так и в публичных выступлениях.

В то время в Германии от туберкулёза умирал каждый седьмой человек, и Кох решил попытать счастья и найти возбудитель туберкулёза. Врачи были бессильны. Туберкулёз вообще считался наследственной болезнью, поэтому и попыток борьбы с ним не предпринималось. Больным прописывали свежий воздух и хорошее питание. Вот и всё лечение.

Учёный начал упорный поиск. Он исследовал срезы тканей, взятых у больных, погибших от туберкулёза. Красил эти срезы различными красителями и часами рассматривал под микроскопом. И ему удалось обнаружить бактерии в виде палочек, которые при посеве на питательную среду (сыворотку крови животных) дали бурный рост. А при заражении этими бактериями морских свинок вызывали у них туберкулёз. Это была сенсация.

Кох достиг величайшего триумфа 24 марта 1882 года, когда он объявил о том, что сумел выделить бактерию, вызывающую туберкулёз. В публикациях Коха по проблемам туберкулёза впервые были обозначены принципы, которые затем стали называться постулатами Коха. Эти принципы «получения исчерпывающих доказательств… что тот или иной микроорганизм действительно непосредственно вызывает определённые заболевания» до сих пор остаются теоретическими основами медицинской микробиологии.

Изучение Кохом туберкулёза было прервано, когда он по заданию германского правительства в составе научной экспедиции уехал в Египет и Индию с целью попытаться определить причину заболевания холерой. Работая в Индии, Кох объявил, что он выделил микроб, вызывающий это заболевание. Открытия Коха сделали его одним из тех лиц, кто определяет направления развития здравоохранения, и, в частности, ответственным за координацию исследований и практических мер в борьбе с такими инфекционными заболеваниями, как брюшной тиф, малярия, чума крупного рогатого скота, сонная болезнь (трипаносомоз) и чума человека.

«Мысль, что микроорганизмы должны составлять причину инфекционных болезней, уже давно высказывалась единичными выдающимися умами, но к первым открытиям в этой области отнеслись было крайне скептически, — писал Кох. — Трудно было на первых порах доказать неопровержимым образом, что найденные микроорганизмы действительно составляют причину болезни. Справедливость этого положения скоро была вполне доказана для многих инфекционных болезней… Здесь-то и удалось выяснить, что бактерии далеко не случайные спутники и что они встречаются правильно и исключительно при соответствующей болезни. Уже на основании этого мы вправе говорить о существующей причинной связи между болезнью и паразитом как о достоверном факте и можем поэтому приписать паразитарное происхождение целому ряду болезней. К таким болезням относятся: брюшной тиф, дифтерит, проказа и азиатская холера.

…Против паразитарной природы этой болезни восставали с необычайным упорством. Были приложены все старания, чтобы лишить холерные бактерии их специфического характера, но они победоносно вышли из этих нападок, и теперь можно считать общепризнанным и обоснованным тот факт, что именно они составляют причину холеры.

За последнее сравнительно короткое время бактериология собрала массу материала по биологии бактерий, и многое из этого имеет значение для медицины. Так, возьмём состояние особенной стойкости, которую обнаруживают иные бактерии, например, сибирской язвы и столбняка, в форме спор, отличаясь беспримерной сравнительно с другими живыми существами выносливостью по отношению к высокой температуре и химическим реагентам. Припомним ещё многочисленные исследования о влиянии холода, тепла, высыхания, химических веществ, света и так далее на не споровые патогенные бактерии; всё это дало результаты, имеющие значение для профилактики.

…Если только оправдаются надежды и если удастся овладеть микроскопическим, но могущественным врагом хотя бы в одной бактериальной инфекционной болезни, то я не сомневаюсь, что скоро добьёмся того же и для других болезней».

В 1885 году Кох стал профессором Берлинского университета и директором только что созданного Института гигиены. В то же время он продолжал исследования туберкулёза, сосредоточившись на поисках способов лечения этого заболевания. В 1890 году он объявил о том, что такой способ найден. Кох выделил так называемый туберкулин (стерильную жидкость, содержащую вещества, вырабатываемые бациллой туберкулёза в ходе роста), который вызывал аллергическую реакцию у больных туберкулёзом. Однако на самом деле туберкулин не стал применяться для лечения туберкулёза, т. к. особым терапевтическим действием он не обладал, а его введение сопровождалось токсическими реакциями, что стало причиной его острейшей критики. Протесты против применения туберкулина стихли, лишь когда обнаружилось, что туберкулиновая проба может использоваться в диагностике туберкулёза. Это открытие, сыгравшее большую роль в борьбе с туберкулёзом у коров, явилось главной причиной присуждения Коху Нобелевской премии.

В 1905 году Кох за «исследования и открытия, касающиеся лечения туберкулёза», был удостоен Нобелевской премии по физиологии и медицине. В нобелевской лекции Кох сказал, что, если окинуть взором путь, «который пройден за последние годы в борьбе с таким широко распространённым заболеванием, как туберкулёз, мы не сможем не констатировать, что здесь были сделаны первые важнейшие шаги».

В 1893 году Кох развёлся со своей первой супругой и женился на молодой актрисе Хедвиге Фрайбург. Люди, мало знакомые с Кохом, часто считали его подозрительным и нелюдимым, однако друзья и коллеги знали его как доброго и участливого человека. Кох был поклонником Гёте и заядлым шахматистом.

В 1906 году учёный был удостоен прусского ордена Почёта, присуждаемого германским правительством. Он был удостоен почётных докторских степеней университетов Гейдельберга и Болоньи. Кох был иностранным членом Французской академии наук, Лондонского королевского научного общества, Британской медицинской ассоциации и многих других научных обществ.

Кох скончался в Баден-Бадене от сердечного приступа 27 мая 1910 года.

 

ЛЮДВИГ БОЛЬЦМАН

 

 

(1844–1906)

 

Людвиг Больцман, без сомнения, был величайшим учёным и мыслителем, которого дала миру Австрия. Ещё при жизни Больцман, несмотря на положение изгоя в научных кругах, был признан великим учёным, его приглашали читать лекции во многие страны. И, тем не менее, некоторые его идеи остаются загадкой даже в наше время. Сам Больцман писал о себе: «Идеей, заполняющей мой разум и деятельность, является развитие теории». А Макс Лауэ позднее эту мысль уточнит так: «Его идеал заключался в том, чтобы соединить все физические теории в единой картине мира».

Людвиг Эдуард Больцман родился в Вене 20 февраля 1844 года, как раз в ночь с последнего дня масленицы на среду, с которой начинался великий пост. Больцман обычно в шутку говорил, что из-за даты своего рождения он и получил характер, которому присущи резкие переходы от ликования к скорби. Отец его, Людвиг Георг Больцман, работал в Имперском министерстве финансов. Он умер от туберкулёза, когда Людвигу было всего пятнадцать лет. Людвиг Больцман учился блестяще, а мать поощряла его разнообразные интересы, дав ему всестороннее воспитание. Так, в Линце Больцман брал уроки игры на фортепиано у знаменитого композитора Антона Брукнера. Всю жизнь он любил музыку и часто устраивал в своём доме с друзьями домашние концерты. В 1863 году Больцман поступил в Венский университет, где изучал математику и физику.

Тогда максвелловская электродинамика представляла собой новейшее достижение теоретической физики. Неудивительно, что и первая статья Людвига была посвящена электродинамике. Однако уже во второй своей работе, опубликованной в 1866 году в статье «О механическом значении второго начала термодинамики», где он показал, что температура соответствует средней кинетической энергии молекул газа, определились научные интересы Больцмана.

Осенью 1866 года, за два месяца до получения докторской степени, Больцман был принят в Институт физики на должность профессора-ассистента. В 1868 году Больцману было присвоено право чтения лекций в университетах, а годом позже он стал ординарным профессором математической физики в университете в Граце. В этот период он помимо разработки своих теоретических идей занимался и экспериментальными исследованиями связи между диэлектрической постоянной и показателем преломления с целью получить подтверждение максвелловской единой теории электродинамики и оптики. Для своих экспериментов он дважды брал в университете краткий отпуск, чтобы поработать в лабораториях Бунзена и Кёнигсбергера в Гейдельберге и Гельмгольца и Кирхгофа в Берлине. Результаты этих исследований были опубликованы в 1873–1874 годах.

Больцман принимал также активное участие в планировании новой физической лаборатории в Граце, директором которой он позже стал.

Это был расцвет научной деятельности Больцмана. Однако ему не хватало широкой аудитории, он чувствовал потребность делиться своими идеями не только со студентами, жадно внимавшими молодому блестящему профессору, но и со своими коллегами-учёными. А Грац для этого был слишком маленьким городком. Вот почему в 1873 году Людвиг Больцман возвращается в Вену в качестве профессора математики. Незадолго до отъезда он познакомился с будущей женой Генриеттой фон Айгентлер.

Популярность Больцмана в Вене была невероятной. Для его лекций всегда выбирали самые большие аудитории, чаще всего актовые залы. И всё равно все желающие попасть не могли.

Перед началом лекции служители вносили три чёрные доски. Самую большую ставили в центре, а две поменьше — по бокам. И выходил Больцман. Высокого роста, с массивной головой, увенчанной мелко вьющимися каштановыми волосами, широкоскулый, с жёсткой, упрямой бородой, с глубоко спрятанными под толстыми круглыми очками глазами — смеющимися и печальными одновременно, он выходил на кафедру, сутулясь и смущаясь своей внешности, своего огромного, вечно красного носа.

Он не отвечал на аплодисменты никак. Стоял к аудитории спиной и ждал, когда в зале наступит тишина. И в этой тишине он с трудом выдавливал из себя ординарные, скучные и обязательные слова: «Итак, в прошлый раз мы остановились…» И пятнадцать минут громким голосом объяснял содержание предыдущей лекции, красивым, чётким почерком выписывая на левой доске итоговые формулы.

А читал он четырёхгодичный курс, охватывающий механику, гидромеханику, учение об упругости, электричество, магнетизм, кинетическую теорию газов и… философию.

Покончив с прошлой лекцией, он возвращался на кафедру, снимал очки и несколько секунд стоял в молчании, склонив голову. И вдруг в мёртвой тишине раздавались слова, похожие на молитву: «Простите меня, если, прежде чем приступить к чтению лекций, я буду вас просить кое-что для себя лично, что мне важнее всего, — ваше доверие, ваше расположение вашу любовь, одним словом, самое большое, что вы способны дать, — вас самих…» И начинал читать лекцию.

Его имя было окружено легендами. Да он и сам своей детской непосредственностью и восторженностью перед самыми прозаическими вещами давал обильную пищу этим анекдотическим легендам. Вдруг однажды весь Грац был взбудоражен невероятной новостью: господин профессор экспериментальной физики лично купил на рынке корову и торжественно за верёвку через весь городок провёл её в свою виллу. Затем, разместив «священное животное» с подобающими почестями, профессор физики направился к профессору зоологии, у которой очень долго консультировался по процессу доения. Или вдруг рано утром зимой весь Грац сходился к катку, на котором Больцман вместе с детьми осваивал катание на коньках.

Но самым неизменным увлечением профессора физики была музыка. В Венском театре оперы за Больцманом и его семьёй была постоянно закреплена ложа; а дома профессор физики ежедневно устраивал вечера камерной музыки, причём сам неизменно исполнял партию на рояле.

Из работ, выполненных Больцманом в Вене, особого внимания заслуживает статья «О теории упругости при внешних воздействиях» (1874), где он сформулировал теорию линейной вязкоупругости. Он описал это явление с помощью интегральных уравнений, представляющих собой важный вклад в теоретическую реологию.

Увы, административная работа, которой в Вене было куда больше, чем в Граце, была для учёного тяжёлым грузом. Его манила кафедра экспериментальной физики в Граце. Здесь он мог бы располагать собственной лабораторией и читать лекции по физике, а не по математике, как в Вене. Бюрократизма в Граце было меньше. Но, кроме того, Больцман собирался жениться. В Вене найти подходящую квартиру было очень трудно, а его будущая жена была из Граца. В 1876 году Больцман занял пост директора Физического института в Граце и оставался на этой должности четырнадцать лет.

Ещё в 1871 году Больцман указал, что второй закон термодинамики может быть выведен из классической механики только с помощью теории вероятности. В 1877 году в «Венских сообщениях о физике» появилась знаменитая статья Больцмана о соотношении между энтропией и вероятностью термодинамического состояния. Учёный показал, что энтропия термодинамического состояния пропорциональна вероятности этого состояния и что вероятности состояний могут быть рассчитаны на основании отношения между численными характеристиками соответствующих этим состояниям распределений молекул.

То есть, если достаточно большую систему оставить без внешнего вмешательства на достаточно долгое время, то вероятность того, что мы найдём её по истечении этого времени в равновесном состоянии, несравненно больше, чем вероятность того, что она будет в каком угодно неравновесном состоянии.

Эта так называемая «аш-теорема» стала вершиной учения Больцмана о мироздании. Формула этого начала была позднее высечена в качестве эпитафии на памятнике над его могилой. Эта формула очень схожа по своей сути с законом естественного отбора Чарлза Дарвина. Только «Аш-теорема» Больцмана показывает, как зарождается и протекает «жизнь» самой Вселенной.

Немецкий физик Р. Клаузиус, давший в 1850 году формулировку второго закона термодинамики, позднее, в 1865 году, введший понятие энтропии, одно время был весьма популярной фигурой. Выводы, сделанные им из второго начала о неизбежности тепловой смерти, были взяты на вооружение не только многими физиками. Главным образом к ним обратились философы, получившие мощные, казалось, неоспоримые аргументы в пользу идеалистических концепций о начале и конце мира, в том числе и в пользу эмпириокритицизма, учения Э. Маха и «энергетического» учения В. Оствальда.

Своей «аш-теоремой» неукротимый Людвиг Больцман заявил: «Тепловая смерть — блеф. Никакого конца света не предвидится. Вселенная существовала и будет существовать вечно, ибо она состоит не из наших „чувственных представлений“, как полагают эмпириокритики, и не из разного рода энергий, как полагают оствальдовцы, а из атомов и молекул, и второе начало термодинамики надо применять не по отношению к какому-то „эфиру“, духу или энергетической субстанции, а к конкретным атомам и молекулам».

Вокруг «аш-теоремы» Людвига Больцмана мгновенно разгорелись не меньшие по накалу дискуссии, чем по тепловой смерти. «Аш-теорема» и выдвинутая на её основе флуктуационная гипотеза были препарированы со всей тщательностью и скрупулёзностью и, как и следовало ждать, обнаружили в себе зияющие, непростительные, казалось бы, для такого великого учёного, как Больцман, изъяны.

Оказалось, что если принять за истину гипотезу Больцмана, то надо принять за веру и такое чудовищное, не укладывающееся ни в какие рамки здравого смысла допущение: рано или поздно, а точнее, уже сейчас, где-то во Вселенной должны идти процессы в обратном второму началу направлении, то есть тепло должно переходить от более холодных тел к более горячим! Это ли не абсурд.

Больцман этот «абсурд» отстаивал, он был глубоко убеждён, что такой ход развития Вселенной наиболее естественный, ибо он является неизбежным следствием её атомного строения.

Вряд ли «аш-теорема» получила бы такую известность, если бы была выдвинута каким-нибудь другим учёным. Но её выдвинул Больцман, умевший не только увидеть за занавесом скрытый от других мир, но умевший защищать его со всей страстью гения, вооружённого фундаментальными знаниями как физики, так и философии.

Кульминацией драматических коллизий между физиком-материалистом и махистами, видимо, следует считать съезд естествоиспытателей в Любеке в 1895 году, где Людвиг Больцман своим друзьям-врагам дал генеральное сражение. Он одержал победу, но в результате после съезда ощутил ещё большую пустоту вокруг себя. В 1896 году Больцман написал статью «О неизбежности атомистики в физических науках», где выдвинул математические возражения против оствальдовского энергетизма.

Вплоть до 1910 года само существование атомистики всё время оставалось под угрозой. Больцман боролся в одиночку и боялся, что дело всей его жизни окажется в забвении. В предисловии ко второй части своих лекций по теории газов он писал в 1898 году: «По моему мнению, большой трагедией для науки будет, если (подобно тому, как это случилось с волновой теорией света из-за авторитета Ньютона) хотя бы на время теория газов окажется позабытой из-за того враждебного отношения к ней, которое воцарилось в данный момент. Я сознаю, что сейчас являюсь единственным, кто, хотя и слабо, пытается плыть против течения. И, тем не менее, я могу способствовать тому, чтобы, когда теория газов снова будет возвращена к жизни, не пришлось делать слишком много повторных открытий».

В 1890 году Больцман принял предложение занять кафедру теоретической физики в Мюнхенском университете и мог, наконец, заняться преподаванием своего любимого предмета. В течение того времени, что он преподавал здесь экспериментальную физику, он использовал для иллюстрации теоретических концепций наиболее наглядные механические модели. Множество студентов со всех концов мира приезжали в Мюнхен, чтобы пройти курс обучения под руководством Больцмана.

Единственная слабость его позиции заключалась в том, что баварское правительство в то время не выплачивало пенсии университетским профессорам; между тем у Больцмана всё более ухудшалось зрение, и его беспокоило будущее семьи.

Своими блестящими, отнюдь не корректными, как это было принято в те время, выступлениями в научных дискуссиях Больцман быстро приобрёл репутацию человека с беспокойным, трудным


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.059 с.