Алгоритмическое конструирование — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Алгоритмическое конструирование

2022-09-12 35
Алгоритмическое конструирование 0.00 из 5.00 0 оценок
Заказать работу

Рассмотрим основные шаги реализации алгоритма шифрования ГОСТ 28147.

Основной шаг криптопреобразования

 

Рис.2.2. Схема основного шага криптопреобразования алгоритма ГОСТ 28147-89.

информация цифровой шифрование ключ

Основной шаг криптопреобразования по своей сути является оператором, определяющим преобразование 64-битового блока данных. Дополнительным параметром этого оператора является 32-битовый блок, в качестве которого используется какой-либо элемент ключа. Схема алгоритма основного шага приведена на рисунке 2.2.

Шаг 0

Определяет исходные данные для основного шага криптопреобразования:

N – преобразуемый 64-битовый блок данных, в ходе выполнения шага его младшая (N 1) и старшая (N 2) части обрабатываются как отдельные 32-битовые целые числа без знака. Таким образом, можно записать N=(N 1,N 2).

X – 32-битовый элемент ключа;

Шаг 1

Сложение с ключом. Младшая половина преобразуемого блока складывается по модулю 232 с используемым на шаге элементом ключа, результат передается на следующий шаг;

Шаг 2

Поблочная замена. 32-битовое значение, полученное на предыдущем шаге, интерпретируется как массив из восьми 4-битовых блоков кода: S=(S 0, S 1, S 2, S 3, S 4, S 5, S 6, S 7), причем S 0 содержит 4 самых младших, а S 7 – 4 самых старших бита S.

Далее значение каждого из восьми блоков заменяется новым, которое выбирается по таблице замен следующим образом: значение блока Si меняется на Si -тый по порядку элемент (нумерация с нуля) i-того узла замены (т.е. i-той строки таблицы замен, нумерация также с нуля). Другими словами, в качестве замены для значения блока выбирается элемент из таблицы замен с номером строки, равным номеру заменяемого блока, и номером столбца, равным значению заменяемого блока как 4-битового целого неотрицательного числа. Отсюда становится понятным размер таблицы замен: число строк в ней равно числу 4-битовых элементов в 32-битовом блоке данных, то есть восьми, а число столбцов равно числу различных значений 4-битового блока данных, равному как известно 24, шестнадцати.

Шаг 3

Циклический сдвиг на 11 бит влево. Результат предыдущего шага сдвигается циклически на 11 бит в сторону старших разрядов и передается на следующий шаг. На схеме алгоритма символом обозначена функция циклического сдвига своего аргумента на 11 бит влево, т.е. в сторону старших разрядов.

Шаг 4

Побитовое сложение: значение, полученное на шаге 3, побитно складывается по модулю 2 со старшей половиной преобразуемого блока.

Шаг 5

Сдвиг по цепочке: младшая часть преобразуемого блока сдвигается на место старшей, а на ее место помещается результат выполнения предыдущего шага.

Шаг 6

Полученное значение преобразуемого блока возвращается как результат выполнения алгоритма основного шага криптопреобразования.

Базовый цикл криптографического преобразования

ГОСТ относится к классу блочных шифров, то есть единицей обработки информации в нем является блок данных. Следовательно, вполне логично ожидать, что в нем будут определены алгоритмы для криптографических преобразований, то есть для зашифрования, расшифрования и «учета» в контрольной комбинации одного блока данных. Именно эти алгоритмы и называются базовыми циклами ГОСТа, что подчеркивает их фундаментальное значение для построения этого шифра.

Базовые циклы построены из основных шагов криптографического преобразования, рассмотренного в предыдущем разделе. В процессе выполнения основного шага используется только один 32-битовый элемент ключа, в то время как ключ ГОСТа содержит восемь таких элементов. Следовательно, чтобы ключ был использован полностью, каждый из базовых циклов должен многократно выполнять основной шаг с различными его элементами. Вместе с тем кажется вполне естественным, что в каждом базовом цикле все элементы ключа должны быть использованы одинаковое число раз, по соображениям стойкости шифра это число должно быть больше одного.

Все сделанные выше предположения, опирающиеся просто на здравый смысл, оказались верными. Базовые циклы заключаются в многократном выполнении основного шага с использованием разных элементов ключа и отличаются друг от друга только числом повторения шага и порядком использования ключевых элементов. В режиме гаммирования используется только алгоритм зашифрования (рис. 2.3), так как шифруются не сами данные, а гамма, накладываемая на них операцией побитового сложения по модулю 2.

 

Рис.2.3. Схема цикла зашифрования 32-З

 

Гаммирование

Гаммирование – это наложение (снятие) на открытые (зашифрованные) данные криптографической гаммы, то есть последовательности элементов данных, вырабатываемых с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. Для наложения гаммы при зашифровании и ее снятия при расшифровании должны использоваться взаимно обратные бинарные операции, например, сложение и вычитание по модулю 264 для 64-битовых блоков данных. В ГОСТе для этой цели используется операция побитового сложения по модулю 2, поскольку она является обратной самой себе и, к тому же, наиболее просто реализуется аппаратно. Гаммирование решает обе упомянутые проблемы: во-первых, все элементы гаммы различны для реальных шифруемых массивов и, следовательно, результат зашифрования даже двух одинаковых блоков в одном массиве данных будет различным. Во-вторых, хотя элементы гаммы и вырабатываются одинаковыми порциями в 64 бита, использоваться может и часть такого блока с размером, равным размеру шифруемого блока.

Гамма для этого режима получается следующим образом: с помощью некоторого алгоритмического рекуррентного генератора последовательности чисел (РГПЧ) вырабатываются 64-битовые блоки данных, которые далее подвергаются преобразованию по циклу 32-З, то есть зашифрованию в режиме простой замены, в результате получаются блоки гаммы. Благодаря тому, что наложение и снятие гаммы осуществляется при помощи одной и той же операции побитового исключающего или, алгоритмы зашифрования и расшифрования в режиме гаммирования идентичны, их общая схема приведена на рисунке 2.4.

РГПЧ, используемый для выработки гаммы, является рекуррентной функцией: – элементы рекуррентной последовательности, f – функция преобразования. Следовательно, неизбежно возникает вопрос о его инициализации, то есть об элементе В действительности, этот элемент данных является параметром алгоритма для режимов гаммирования, на схемах он обозначен как S, и называется в криптографии синхропосылкой, а в нашем ГОСТе – начальным заполнением одного из регистров шифрователя. По определенным соображениям разработчики ГОСТа решили использовать для инициализации РГПЧ не непосредственно синхропосылку, а результат ее преобразования по циклу 32-З: . Последовательность элементов, вырабатываемых РГПЧ, целиком зависит от его начального заполнения, то есть элементы этой последовательности являются функцией своего номера и начального заполнения РГПЧ: где fi (X)=f(fi –1(X)), f 0(X)=X. С учетом преобразования по алгоритму простой замены добавляется еще и зависимость от ключа:

 

 

где Гi – i-тый элемент гаммы, K – ключ.

Таким образом, последовательность элементов гаммы для использования в режиме гаммирования однозначно определяется ключевыми данными и синхропосылкой. Естественно, для обратимости процедуры шифрования в процессах за- и расшифрования должна использоваться одна и та же синхропосылка. Из требования уникальности гаммы, невыполнение которого приводит к катастрофическому снижению стойкости шифра, следует, что для шифрования двух различных массивов данных на одном ключе необходимо обеспечить использование различных синхропосылок. Это приводит к необходимости хранить или передавать синхропосылку по каналам связи вместе с зашифрованными данными, хотя в отдельных особых случаях она может быть предопределена или вычисляться особым образом, если исключается шифрование двух массивов на одном ключе.

Теперь подробно рассмотрим РГПЧ, используемый в ГОСТе для генерации элементов гаммы. Прежде всего, надо отметить, что к нему не предъявляются требования обеспечения каких-либо статистических характеристик вырабатываемой последовательности чисел. РГПЧ спроектирован разработчиками ГОСТа исходя из необходимости выполнения следующих условий:

· период повторения последовательности чисел, вырабатываемой РГПЧ, не должен сильно (в процентном отношении) отличаться от максимально возможного при заданном размере блока значения 264;

· соседние значения, вырабатываемые РГПЧ, должны отличаться друг от друга в каждом байте, иначе задача криптоаналитика будет упрощена;

· РГПЧ должен быть достаточно просто реализуем как аппаратно, так и программно на наиболее распространенных типах процессоров, большинство из которых, как известно, имеют разрядность 32 бита.

Исходя из перечисленных принципов, создатели ГОСТа спроектировали весьма удачный РГПЧ, имеющий следующие характеристики:

· в 64-битовом блоке старшая и младшая части обрабатываются независимо друг от друга: ; фактически, существуют два независимых РГПЧ для старшей и младшей частей блока.

· рекуррентные соотношения для старшей и младшей частей следующие:

 

, где C 0=101010116;

, где C 1=101010416;

 

Шаг 0

Определяет исходные данные для основного шага криптопреобразования:

T о(ш) – массив открытых (зашифрованных) данных произвольного размера, подвергаемый процедуре зашифрования (расшифрования), по ходу процедуры массив подвергается преобразованию порциями по 64 бита;

S – синхропосылка, 64-битовый элемент данных, необходимый для инициализации генератора гаммы;

Шаг 1

Начальное преобразование синхропосылки, выполняемое для ее «рандомизации», то есть для устранения статистических закономерностей, присутствующих в ней, результат используется как начальное заполнение РГПЧ;

Шаг 2

Один шаг работы РГПЧ, реализующий его рекуррентный алгоритм. В ходе данного шага старшая (S 1) и младшая (S 0) части последовательности данных вырабатываются независимо друг от друга;

Шаг 3

Гаммирование. Очередной 64-битовый элемент, выработанный РГПЧ, подвергается процедуре зашифрования по циклу 32–З, результат используется как элемент гаммы для зашифрования (расшифрования) очередного блока открытых (зашифрованных) данных того же размера.

Шаг 4

Результат работы алгоритма – зашифрованный (расшифрованный) массив данных.

Программная реализация

Алгоритм шифрования ГОСТ 28147-89 реализован в одноимённом классе. В нём имеются следующие поля:

· private byte[] key - ключ используемый при шифровании в байтовом массиве;

· private BitArray baKey - ключ в битовом виде;

· ulong SyncMessage - синхропосылка;

· private List<byte> cryptMessage - список байтов сообщения для шифрования;

· private byte[,] matrixH - таблица замен;

Методы класса:

· public string Key() – возвращает ключ в виде строки;

· public byte[] KeyByte() – возвращает ключ в виде байтового массива;

· public GOST2814789(byte[] key) и public GOST2814789() – конструкторы класса;

· public byte[] Crypt(string source) и public void Crypt(FileStream fs) – методы шифрующие строку и файл соответственно;

· public string Decrypt(byte[] source) и public void Decrypt(FileStream fs) – методы расшифровывающие байтовый массив и файл соответственно;

· private byte[] MainStep(BitArray N, BitArray X) – основной шаг криптографического преобразования. Принимает 64-битный блок шифруемых данных и 32-битный элемент ключа;

· private byte[] CryptStep(BitArray N) – процедура шифрования. Принимает 64-битный блок данных для зашифровки и итеративно выполняет с ним основной шаг криптопреобразования меняя элементы ключа;

· private byte[] DoCrypt(byte[] source) – метод принимает шифруемый байтовый массив, делит его на блоки, генерирует для каждого блока элемент гаммы и выполняет операцию наложения гаммы. Возвращает зашифрованный байтовый массив;

· private byte[] DoDecrypt(byte[] source) – метод принимает расшифровываемый байтовый массив, делит его на блоки, генерирует для каждого блока элемент гаммы и выполняет операцию наложения гаммы. Возвращает расшифрованный байтовый массив;

· public void GenerateKey() – метод генерации ключа;

· public byte[] Xoring(byte[] first, byte[] second) – метод принимает два байтовых массива. Возвращает результат наложения первого на второй операцией исключающего или в виде массива байт;

· private BitArray Exchange(BitArray source) – метод реализующий обмен частей в блоке данных.

Реализация перечисленных методов на языке C# с комментариями представлена в приложении.


Экспериментальная часть

Целью тестирования системы является выявление ошибок в работе, связанных с обработкой данных, общего функционирования программной системы; проверка функциональных характеристик разработанной системы

В данном разделе приводится описание тестов проверки работы приложения, реализующего шифрование по алгоритму Blowfish, а также результат данных тестов.


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.