Звездные скопления — «школьные классы» небесных светил — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Звездные скопления — «школьные классы» небесных светил

2021-06-30 22
Звездные скопления — «школьные классы» небесных светил 0.00 из 5.00 0 оценок
Заказать работу

 

Иногда звезды образуют на небе группы, которые называются звездными скоплениями. Некоторые из них были известны уже в древности. Так, например, греческие и римские поэты упоминают группу из семи звезд, Плеяды (рис. 2.5). Невооруженным глазом можно увидеть шесть из них. В действительности в этом скоплении есть по крайней мере 120 более слабых звезд и, вероятно, несколько сот еще более слабых. Все звезды Плеяд расположены в относительно небольшой области пространства. Свет пересекает это звездное скопление от одного края до другого всего за 30 лет. Понятно, что Плеяды это очень плотная звездная ассоциация. Они не расположены неподвижно в пространстве, а все вместе летят в одном направлении с одинаковой скоростью. Близкое расположение этих звезд и одинаковая скорость их движения позволяют нам предположить, что звезды Плеяд имеют общую историю возникновения и развития. Иными словами, они образовались одновременно.

 

Рис. 2.5. Скопление Плеяды (семь звезд). Наиболее яркие звезды возбуждают свечение окружающих газовых масс. На снимке светящиеся облака перекрывают свет ближайших звезд. (Четыре луча, исходящие на снимке от ярких звезд, и светлые круги вокруг звезд обусловлены несовершенством фотографирующей системы.) Кроме ярких звезд, видимых невооруженным глазом, к этому скоплению относятся более 100 звезд. Они движутся в пространстве с одинаковой скоростью и находятся предположительно на равном расстоянии друг от друга.

 

То же самое относится и к другому звездному скоплению, которое называют Гиадами. Это скопление также известно с глубокой древности. Еще увереннее мы можем говорить об общем происхождении звезд в так называемых шаровых звездных скоплениях, которые содержат от 50 тысяч до 50 миллионов звезд (рис. 2.6). В центральной области таких скоплений плотность расположения звезд примерно в 10 тысяч раз превышает плотность звезд в окрестности Солнца.

 

Рис. 2.6. Звездное скопление 47 в созвездии Тукана. Снимок получен с помощью зеркального телескопа (1 м.) системы Шмидта на Европейской южной обсерватории в Чили. В этом скоплении звезды расположены так близко друг к другу, что в центральной области сливаются на снимке. Глядя на этот снимок, можно подумать, что звезды в центре такого скопления перекрываются, но на самом деле они расположены достаточно далеко друг от друга.

 

Какое удивительное зрелище открывается на звездном небе жителям планетной системы, принадлежащей к такому скоплению!

Как распределяются светимости и температуры поверхности у звезд звездных скоплений? Может быть, диаграммы Г-Р таких скоплений похожи на диаграммы для ближайших соседей Солнца (см. рис. 2.2)? Наблюдаются ли среди них звезды главной последовательности? Если рассмотреть их диаграммы Г-Р, то мы увидим существенное отличие. Действительно, в некоторых звездных скоплениях почти все звезды принадлежат к главной последовательности, как, например, в Плеядах (диаграмма Г-Р этого скопления показана на рис. 2.7). Однако в большинстве скоплений только самые слабые звезды относятся к главной последовательности. В этих скоплениях не вся полоса последовательности заполнена звездами. Этот ряд обрывается в области больших светимостей. Наиболее яркие звезды главной последовательности отсутствуют. Вместо них в звездных скоплениях есть красные звезды с большой светимостью: красные гиганты и сверхгиганты, которые показаны, в частности, на диаграмме Г-Р для скопления Гиад (рис. 2.8). Еще интереснее диаграмма Г-Р шарового звездного скопления, приведенная на рис. 2.9. На этой диаграмме звезды заполняют только участок главной последовательности, в то время как точки, соответствующие более ярким звездам, сдвинуты далеко вправо. Звезды разных скоплений можно нанести на одну и ту же диаграмму Г-Р. Такая диаграмма показана на рис. 2.10. На этом рисунке главная последовательность обозначена жирной линией, а при переходе к звездам наибольшей светимости линия, показанная на диаграмме, отклоняется направо вверх. Мы видим, что у разных звездных скоплений линия уходит вправо от главной последовательности в разных точках. Поскольку мы знаем, что при движении вверх по главной последовательности увеличивается масса звезд, то можно сказать, что в каждом звездном скоплении звезды, масса которых меньше определенного значения, лежат на главной последовательности, в то время как в области больших масс главная последовательность не заполнена. Этот факт и позволяет понять, как происходит эволюция звезд.

 

Рис. 2.7. Диаграмма Г-Р для звездного скопления Плеяды. Показаны только наиболее яркие звезды. Они образуют главную последовательность. В верхней части этой последовательности видно, что при светимостях примерно в 1000 раз больше солнечной звёзды на диаграмме уже отклоняются от главной последовательности вправо.

 

 

Рис. 2.8. Диаграмма Г-Р для звездного скопления Гиады. Если главная последовательность в Плеядах (см. рис. 2.1) простирается примерно до светимости в 1000 раз больше солнечной, то в Гиадах главная последовательность обрывается ниже 100 солнечных светимостей. Более яркие звезды главной последовательности отсутствуют. В то же время на диаграмме Г-Р этого скопления наблюдается группа красных гигантов.

 

 

Рис. 2.9. Диаграмма Г-Р для звездного скопления МЗ в созвездии Гончих Псов. Это шаровое звездное скопление такого же типа, как скопление 41 Тукана (см. рис. 2.6). На главной последовательности еще находятся звезды, светимость которых всего в 5 раз больше солнечной. Основная часть более ярких звезд не лежит на главной последовательности. Позже мы еще вернемся в этой книге к звездам, которые примерно в 100 раз ярче Солнца. Эти звезды лежат в горизонтальной полосе, которая тянется по шкале температур от 5800 до 13000 градусов. Ее поэтому называют горизонтальной ветвью.

 

 

Рис. 2.10. Отклонение звезд различных скоплений от главной последовательности на диаграмме Г-Р (по данным Аллана Сандейджа). Штриховые линии показывают, где расположены звезды разных скоплений. Наиболее высоко на диаграмме простирается скопление в созвездии Персея. Затем оно отклоняется направо вверх. Наиболее короткую главную последовательность имеет шаровое звездное скопление МЗ. Она отклоняется направо уже в нижней части диаграммы. Стрелками слева показано, где лежат на главной последовательности звезды определенной массы. Числами возле стрелок отмечены массы в единицах массы Солнца М. Таким образом, звездное скопление в созвездии Персея содержат звезды главной последовательности до 10–15 масс Солнца, в то время как наиболее тяжелые звезды главной последовательности шарового скопления МЗ всего в 1,3 раза тяжелее Солнца.

 

По мере того как звезда развивается со временем и стареет, изменяются и ее свойства. В частности, изменяются температура ее поверхности и светимость. Точка, которая обозначает звезду на диаграмме Г-Р, перемещается. Так, например, если звезда вначале была красным гигантом, а через миллионы лет превратилась в белый карлик, то соответствующая точка на диаграмме Г-Р сдвинется из правого верхнего угла в левый нижний. Если бы мы жили достаточно долго и могли в течение миллионов и миллиардов лет измерять характеристики звезд и наносить их на диаграмму Г-Р, то мы увидели бы, как перемещаются соответствующие точки на ней. Мы узнали бы, что в некоторых областях звезды находятся долго, а другие области пересекают очень быстро. Мы бы построили пути развития звезд на диаграмме Г-Р (их еще называют эволюционными треками).

Но перед нами есть только «мгновенный снимок». Мы видим лишь, где расположены звезды на диаграмме в настоящее время.[4] При этом оказывается, что ближайшие соседи Солнца находятся на главной последовательности. Что это значит? Быть может, точки на диаграмме Г-Р особенно медленно перемещаются в полосе, где расположена главная последовательность? Может быть, они долго находятся в этой области? Тогда при наблюдении за звездами разного возраста окажется, что особенно много таких звезд расположено в этой полосе.

Этот эффект мы знаем из нашего повседневного опыта. Почему в мире взрослых больше, чем детей? Потому что детство продолжается всего около 15 лет, в то время как взрослым человек остается около 50 лет. Если собрать вместе группу людей разного возраста, например жителей нашего города, то окажется, что большинство из них находится на «взрослой стадии развития». Возникает вопрос: может быть, на главной последовательности звезды находятся достаточно долго?

Вспомним, что и Солнце расположено на главной последовательности. Мы знаем, что за многие миллиарды лет Солнце относительно мало изменилось и все это время оно принадлежит к главной последовательности. Мы видели, что энергия, запасенная в водороде солнечных недр, позволяет очень долго поддерживать его излучение. Может быть, и все звезды главной последовательности светят за счет превращения водорода в гелий? Может быть, и они, имея такой источник энергии, очень долго остаются неизменными, и по этой причине так плотно заполнена звездами полоса главной последовательности на диаграмме Г-Р?

Предположим, что все звезды главной последовательности светят за счет одного и того же энергетического источника: превращения водорода в гелий. Раньше мы уже подсчитывали для Солнца и Спики, сколько могут светить эти звезды. Предположим, что водород составляет около 70 % массы звезды и что ядерное горючее в звездных недрах начинает исчерпываться, когда в гелий превратится уже 10 % водорода. Тогда мы получим, что продолжительность жизни Солнца составит примерно 7 миллиардов лет, в то время как Спика, масса которой больше солнечной в 10 раз, а светимость в 10 тысяч раз, будет светить с неизменной силой всего несколько миллионов лет. Такие же оценки можно провести для любой звезды главной последовательности. При этом мы узнаем, сколько времени ее светимость будет поддерживаться за счет реакций превращения водорода в гелий. Возьмем для примера какую-либо звезду на главной последовательности, показанной на рис. 2.3. По диаграмме Г-Р мы можем определить ее светимость, а по соотношению между светимостью и массой для звезд главной последовательности (рис. 2.4) вычислим ее массу, которая соответствует известной величине ее светимости. Если сравнить величину ядерной энергии, запасенной в данном количестве звездного вещества, с болометрической светимостью звезды (а это количество энергии, излучаемой в космическое пространство за одну секунду), то мы узнаем время, в течение которого может поддерживаться эта светимость. На рис. 2.11 возле главной последовательности обозначены времена жизни звезд, вычисленные таким способом. Данные, приведенные выше для Спики, тоже помещены на рисунке. Мы видим, что чем больше масса звезды на главной последовательности, тем быстрее отдает она свою энергию и тем короче время, в течение которого она светит за счет ядерного горения водорода.

 

Рис. 2.11. Главная последовательность на диаграмме Г-Р. Слева показано стрелками, в каких точках диаграммы расположены звезды определенной массы (в единицах массы Солнца М). Поскольку масса Солнца определяет запасы ядерного горючего; го, зная для каждой точки главной последовательности светимость звезд, можно определить время, в течение которого звезда, расположенная в определенном месте главной последовательности, сможет светить за счет превращения водорода в гелий. Эти отрезки времени отмечены стрелками справа. Звезды, которые более чем в 39 раз тяжелее Солнца, исчерпывают свой водород уже за 1 миллион лет. Звезды в 2 раза легче Солнца могут светить целых 100 миллиардов лет. Сравнение с рис. 2.10 позволяет определить возраст звездных скоплений.

 

Когда всю жизнь занимаешься звездами, начинаешь замечать, как велико сходство между ними и людьми. Вот и здесь мы видим, что чем больше масса, тем короче продолжительность жизни!

 

Возраст звездных скоплений

 

Если рассмотреть группу звезд в главной последовательности, которые существуют за счет сжигания водорода, причем звезды эти будут разной массы, но одинакового возраста, то прежде всего мы заметим исчерпание ядерного горючего у наиболее тяжелых звезд из верхней части главной последовательности. С течением времени запасы энергии будут заканчиваться у все более легких звезд. Спустя 7 миллиардов лет запасы водорода исчерпаются и у звезд с массой, равной массе Солнца.

Можно ли заметить этот эффект, наблюдая звездные скопления? Посмотрим еще раз на диаграмму Г-Р скопления Гиад (рис. 2.8). Основная последовательность этого звездного скопления заполнена вплоть до светимости в 20 раз больше визуальной светимости Солнца. Это соответствует массам, которые в 2,5 раза больше солнечной. Продолжительность горения водорода в таких звездах составляет около 800 миллионов лет (см. рис. 2.11). Если группа звезд одинакового возраста существует 800 миллионов лет с начала ядерной реакции превращения водорода в гелий, то у звезд с массой в 2,5 раза больше массы Солнца запасы водорода уже подойдут к концу, в то время как звезды меньшей массы все еще будут жить за счет сжигания водорода. Быть может, именно по этой причине верхняя часть главной последовательности в скоплении Гиад не занята?

В других звездных скоплениях главная последовательность обрывается при иных значениях светимости, а значит, и массы. Так, например, в скоплении Плеяд существуют звезды главной последовательности со светимостью в 140 раз больше солнечной. Это соответствует звездам примерно в 6 солнечных масс, продолжительность жизни которых при сжигании водорода составляет только 100 миллионов лет. Звезды с наиболее высокой яркостью лежат на диаграмме Г — Р Плеяд не совсем точно на главной последовательности. Они немного смещены вправо. Это говорит о первых признаках исчерпания водорода. Таким способом мы можем установить, какие из звездных скоплений старше, а какие моложе. Для этого надо посмотреть на их диаграммы Г-Р и определить, до какой массы заполнена главная последовательность. На рис. 2.10 схематически показано для нескольких звездных скоплений, где прерывается у каждой из них главная последовательность: звездное скопление в созвездии Персея оказалось самым молодым. В этом скоплении главная последовательность заполнена вплоть до светимостей в 1000 раз больше солнечной. Поэтому возраст этого скопления составляет всего 10 миллионов лет. Затем идут Плеяды, еще старше Гиады, и, наконец, самое старое из этих скоплений шаровое скопление МЗ в созвездии Гончих Псов. В этом скоплении главная последовательность заполнена всего лишь до звезд, светимость которых близка к 3 светимостям Солнца. Наиболее яркая звезда главной последовательности всего в 1,3 раза тяжелее Солнца. Если такие небольшие звезды уже готовятся покинуть главную последовательность, то это значит, что возраст скопления МЗ составляет примерно 6-10 миллиардов лет.

Как узнать, на самом ли деле уход звезд в скоплениях с главной последовательности на диаграмме Г-Р означает, что в них исчерпались запасы водорода? Если это так, то мы уже в значительной мере знаем, как развиваются звезды. А именно, звезда остается на главной последовательности до тех пор, пока не исчерпаются запасы водорода в ее недрах. Затем она перемещается направо, в область красных гигантов. Поэтому звезды, покинувшие главную последовательность, находятся справа от нее. Если все это верно, то возникает новый вопрос: каков возраст самых старых звездных скоплений и насколько молоды самые молодые? Что происходит со звездами, когда в их недрах еще не началось ядерное горение водорода? Какие процессы протекают, когда запасы водорода заканчиваются? Хотя мы уже знаем, что уйдя с главной последовательности, звезды становятся красными гигантами, однако они не могут оставаться в этой области очень долго, поскольку их ядерная энергия уже в значительной мере израсходована.

При этом все время следует помнить: пока мы всего лишь предположили, что свойства звезд в звездных скоплениях объясняются исчерпанием запасов ядерной энергии. Хотя эта гипотеза хорошо согласуется с результатами наблюдений, однако мы все еще не можем уверенно сказать, достаточно ли велики температуры и плотности вещества в недрах звезд, чтобы там могли протекать ядерные реакции. Температура на поверхности звезд далеко не достаточна для этого. Откуда мы можем узнать, какие температуры достигаются в звездных недрах? Свет, который поступает к нам от звезд, несет информацию о тонком поверхностном слое. Так, например, у Солнца свет исходит из «атмосферы», масса которой составляет всего одну сотую миллиардной доли общей массы Солнца. Глубже этого слоя мы ничего не видим. И тем не менее мы можем сказать о недрах Солнца больше, чем о недрах нашей Земли. Чем объясняется такой парадокс, мы узнаем в следующей главе.

 

 

Глава 3

Звезды-ядерные реакторы

 

Пока мы еще не можем окончательно утверждать, что звезды светят за счет протекающих в их недрах ядерных реакций. Хотя до сих пор нам не было известно другого столь же мощного источника энергии, мы не вправе утверждать, что его не может быть. Разве нельзя предположить, что будущее развитие физики позволит открыть новые, неизвестные нам возможности получения энергии? Может быть, этот источник энергии уже описан в одном из научно-фантастических романов? В предыдущей главе мы показали, что некоторые свойства звезд хорошо описываются в предположении, что в их недрах происходят ядерные реакции с выделением энергии. В этой и следующей главах мы узнаем, что это предположение правильно. Нам не нужно искать новые, еще не известные источники энергии. Физики-ядерщики окончательно объяснили астрономам, почему светят звезды. При этом еще в начале 20-х годов физики не верили, что в звездных недрах могут идти ядерные реакции! Таков был уровень знаний того времени.

 

Строение атома

 

Все, что нас окружает, горные породы и минералы, вещества в атмосфере и в морях, клетки растений и животных, газовые туманности и звезды во Вселенной во всем их многообразии все это состоит из 92 элементарных кирпичиков, химических элементов. Этот факт был установлен наукой девятнадцатого столетия, которая тем самым сильно упростила картину окружающего нас мира. Ученые нашего века в свою очередь показали, что существует всего три типа элементарных частиц, из которых построены атомы этих 92 элементов: протоны, нейтроны и электроны. Так, например, атомы гелия отличаются от атомов углерода только тем, что они состоят из разного количества этих элементарных частиц (рис. 3.1).

 

Рис. 3.1. Схема строения атомов водорода, гелия и углерода. Протоны изображены красными шариками, нейтроны — серыми. Траектории электронов (показаны светло-серыми шариками), обращающихся вокруг ядер, изображены в другом масштабе. Шесть электронов, обращающихся вокруг ядра углерода, не показаны.

 

Атом гелия состоит из ядра, которое содержит два протона и два нейтрона. Протон-это положительно заряженная частица. Поэтому ядро атома гелия тоже заряжено положительно. Вокруг него стремительно вращаются две отрицательно заряженные легкие частицы, два электрона. Они образуют электронную оболочку атома гелия. Атомы углерода обладают более сложной структурой. Они тоже состоят из ядра, которое содержит протоны и нейтроны. Однако в ядре атома углерода уже шесть протонов и шесть нейтронов, а в электронной оболочке находятся шесть электронов. Самым простым атомом является атом водорода. Его ядро состоит всего из одного протона, вокруг которого обращается один электрон.

Протон и нейтрон имеют почти одинаковые массы. Их называют тяжелыми частицами, хотя по сравнению с обычными предметами, которые нас окружают, эти «тяжелые» частицы почти ничего не весят. Если бы мы могли положить на чашу весов триллион таких тяжелых частиц, то они весили бы всего одну триллионную долю грамма. Масса электрона еще в две тысячи раз меньше массы протона. Протон заряжен положительно, электрон — отрицательно. При этом заряды электронов и протонов в точности равны друг другу. Образованный из протона и электрона атом водорода электрически нейтрален. Нейтрон не имеет электрического заряда. Существует также элементарная частица с массой, равной массе электрона, и положительным электрическим зарядом: позитрон. Однако время жизни позитрона невелико: если он приблизится к какому-либо электрону, то электрон и позитрон тут же сливаются друг с другом и аннигилируют с образованием кванта света.

Все атомы и ядра состоят из определенного количества протонов и нейтронов. Сколько протонов находится в ядре, столько же электронов обращается вокруг ядра в электронных оболочках. Поэтому положительный заряд протонов ядра в точности компенсируется отрицательным зарядом электронов. Собственно говоря, дело обстоит еще проще. Если быть точным, то атомы состоят не из трех типов элементарных частиц: протонов, нейтронов и электронов, а всего из двух. В атомных ядрах протоны и электроны могут превращаться в нейтроны. За пределами атомного ядра нейтрон примерно через 17 минут распадается на протон и электрон. Поэтому можно считать, что окружающий нас мир во всем его многообразии построен только из протонов и электронов. Сумма количества протонов и нейтронов в атомном ядре называется массовым числом ядра, а количество протонов — зарядом ядра. Таким образом, атом водорода имеет массовое число 1 и заряд ядра 1. У гелия массовое число равно 4, а заряд ядра 2. Наиболее распространенный тип атомов железа имеет массовое число 56, а заряд ядра 26. Заряд ядра показывает также, сколько электронов должно обращаться вокруг ядра, чтобы атом был полностью электрически нейтральным. Строение электронных оболочек определяет химические свойства веществ. Вещества с различными зарядами ядра различаются по химическим свойствам из-за того, что у атомов этих веществ разные электронные оболочки. Атомы с одинаковым зарядом ядра, но с различным числом нейтронов, не различаются по химическим свойствам. Они различаются только массовым числом. Такие атомы называются изотопами одного и того же элемента. Так, например, кроме обычного водорода существует так называемый тяжелый водород. В ядре этого изотопа кроме одного протона есть еще и один нейтрон. Такой изотоп водорода называется дейтерием. Он в небольших количествах встречается в природе.

Хотя кусок железа и газообразный водород в воздушном шарике не имеют на первый взгляд между собой ничего общего, однако атомы и того и другого элемента построены из одних и тех же протонов и электронов. Если бы мы могли взять 56 атомов водорода и расположить 56 протонов и 56 электронов этих атомов в нужном порядке: из 30 электронов и 30 протонов сделать 30 нейтронов, объединить эти нейтроны с оставшимися 26 протонами в атомное ядро, и построить вокруг этого ядра электронную оболочку из остальных 26 электронов, то мы получили бы из водорода атом железа.

Если бы мы могли взять 4 атома водорода, образовать из двух электронов и двух протонов два нейтрона, объединить их с двумя оставшимися протонами в атомное ядро, то мы получили бы ядро с массовым числом 4 и зарядом 2, вокруг которого смогли бы обращаться два оставшихся электрона. При этом из четырех атомов водорода мы получили бы атом гелия. В результате такого процесса должна освобождаться энергия. Однако объединить ядра разных атомов друг с другом не так-то просто.

 


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.048 с.