Сульфатредуцирующие бактерии — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Сульфатредуцирующие бактерии

2017-05-20 1626
Сульфатредуцирующие бактерии 0.00 из 5.00 0 оценок
Заказать работу

Эубактерии, окисляющие соединения серы: общие сведения

Описано много представителей разных групп эубактерий, способных окислять восстановленные соединения серы, например, сероводород, тиосульфат, а также молекулярную серу. Это фототрофы, осуществляющие бескислородный фотосинтез, некоторые типичные гетеротрофные бактерии родов Bacillus, Pseudomonas, Arthrobacter и др., группы бесцветных серобактерий и тионовых бактерий. Окисление серы и ее восстановленных соединений может служить источником клеточной энергии, электронов при фотосинтезе, использоваться для детоксикации образующейся при дыхании перекиси водорода.

Тионовые бактерии

Использование процесса окисления серы и ее неорганических восстановленных соединений для получения клеточной энергии показано для группы тионовых бактерий, представленных родами Thiobacillus, Thiomicrospira, Thiodendron и др. Это одноклеточные организмы разной морфологии и размеров; неподвижные или подвижные (движение осуществляется с помощью полярно расположенных жгутиков); бесспоровые. Размножаются делением или почкованием. Имеют клеточную стенку грамотрицательного типа. Для некоторых представителей рода Thiobacillus характерна развитая система внутрицитоплазматических мембран.

Для тионовых бактерий показана способность окислять с получением энергии помимо молекулярной серы (S0) многие ее минеральные восстановленные соединения: сульфид (S), тиосульфат (S2O3),сульфит (SO3), тритионат (S3O6), тетратионат (S4O6). Некоторые тионовые бактерии могут получать энергию за счетокисления тиоцианата (CNS), диметилсульфида (CH3SCH3), диметилдисульфида(CH3SSCH3), а также сульфидов тяжелых металлов. Там, где в качестве промежуточного продукта окисления образуется молекулярная сера, она откладывается вне клетки. Thiobacillus ferrooxidansполучает энергию, окисляя также двухвалентное железо.

Полное ферментативное окисление тионовыми бактериями молекулярной серы и различных ее восстановленных соединений приводит к образованию сульфата. Окисление сероводорода до сульфата сопровождается потерей 8 электронов, поступающих в дыхательную цепь, при этом в качестве промежуточных продуктов образуется молекулярная сера и сульфит:

H2S приводит к S0 приводит к SO3 приводит к SO4

На этапе окисления сульфита до сульфата, протекающего с образованием аденилированного промежуточного соединения денозинфосфосульфата (АФС), имеет место субстратное фосфорилирование, позволяющее запасать освобождающуюся при этом энергию в молекулах АТФ:

SO3 + АМФ приводит к АФС + 2е;

АФС + Ф приводит к SO4-- + АДФ

Далее с помощью аденилаткиназы из АДФ синтезируется АТФ:

2АДФпереходит в АМФ + АТФ

Основное же количество энергии тионовые бактерии получают в результате переноса образующихся при окислении восстановленной серы электронов, поступающих в дыхательную цепь на уровнецитохрома а (рис. 1). Дыхательная цепь тионовых бактерий содержит все типы переносчиков, характерных для аэробных хемогетеротрофов. У тионовых бактерий обнаружены флавопротеины,убихиноны, FeS-белки, цитохромы типа b, с, цитохромоксидазы о, d, a+а3.

В большинстве случаев конечным акцептором электронов служит О2, который не может быть заменен никаким другим акцептором. Рост отдельных штаммов возможен в микроаэробных условиях. Некоторые тионовые бактерии являются факультативными аэробами; они могут использовать в качестве конечного акцептора электронов не только О2, но и нитраты, восстанавливая их до N2 или только до нитрита. В анаэробных условиях использование нитратов в качестве конечного акцептора электронов индуцирует синтез диссимиляционной нитратредуктазы, осуществляющей перенос электронов дыхательной цепи на нитраты.

Некоторые виды относятся к облигатным хемолитоавтотрофам, другие - могут расти как хемолитоавтотрофно, так и хемоорганогетеротрофно, используя в последнем случае в качестве источника углерода и энергии ряд органических соединений (кислоты, сахара, спирты, аминокислоты). Наконец, описаны тионовые бактерии, растущие хемолитогетеротрофно, используя в качестве источника углерода только органические соединения, а энергию получая за счет окисления восстановленных соединений серы. Основным механизмом ассимиляции СО2 служитвосстановительный пентозофосфатный цикл, обнаруженный у всех тионовых бактерий. Вспомогательную роль играют реакции карбоксилирования трехуглеродных соединений, в первую очередь фосфоенолпировиноградной кислоты.

Поскольку у тионовых бактерий место включения электронов в дыхательную цепь находится на уровне цитохрома с, у них функционирует система обратного переноса электронов для обеспечения конструктивных процессов молекулами НАД*Н2.

У разных представителей этой группы, способных расти, используя органические соединения, обнаружены активности ферментов гликолиза, окислительного пентозофосфатного пути, пути Энтнера-Дудорова. Описано функционирование "замкнутого" и "разорванного" ЦТК, а у некоторых тиобацилл - глиоксилатного шунта.

Тионовые бактерии приспособлены к разным условиям обитания. Thiobacillus thiooxidans и Thiobacillus ferrooxidans - ярко выраженные ацидофилы (оптимальный рН 2-4), Thiobacillus denitrificans иThiobacillus thioparus, наоборот, развиваются только в нейтральной и щелочной среде (рН 7-10). Большинство тиобацилл относятся к мезофилам с оптимальной температурой роста приблизительно 30 градусов по С. Описаны термофильные штаммы, растущие при 60-70 градусов по С.

Бесцветные серобактерии

Бесцветные серобактерии очень напоминают цианобактерии, являясь как бы их непигментированными аналогами. На основании морфологических признаков делятся на две группы: одна представлена одноклеточными формами (роды Achromatium, Macromonas и др.), в составе другой объединены нитчатые организмы (роды Beggiatoa, Thiothrix, Thioploca). Одноклеточные бесцветные серобактерии - подвижные или неподвижные, различающиеся размерами, формами. Нитчатые организмы представлены также неподвижными или способными к скользящему движению видами (рис. 2, 1).

Единственный общий признак группы - способность откладывать серу в периплазматическом пространстве клеток. Вопрос о значении, которое имеет окисление восстановленных соединений серы для этой группы бактерий, имеет длинную историю. С.Н.Виноградский, наблюдая в 1887-1889 гг. в клетках Beggiatoa при выращивании на среде с H2S отложение гранул серы и их последующее исчезновение после исчерпания сероводорода из среды, пришел к выводу, что энергия, освобождающаяся при окислении H2S до S0 и затем до SO4 с участием О2, используется этим организмом для ассимиляции СО2. Таким образом, работая с Beggiatoa, Виноградский сформулировал положение о принципиально новом способе существования организмов -хемолитоавтотрофии. Однако позднее выяснилось, что культуры, с которыми работал Виноградский, были нечистыми. И до сих пор большинство представителей этой группы не выделены в виде чистых культур, что затрудняет изучение их физиологии. Для некоторых бесцветных серобактерий, в том числе и для Beggiatoa, были получены данные в пользу того, что окисление H2S может быть связано с получением клеткой энергии.

В то же время показано, что важная физиологическая особенность бесцветных серобактерий - образование ими значительных количеств перекиси водорода. Более 80-90% потребленного клетками в процессе дыхания О2 восстанавливается лишь до Н2О2. Накоплению в клетках перекиси водорода способствует низкая каталазная активность, обнаруженная у этих организмов. Была выявлена определенная связь между окислением H2S и кислородным метаболизмом бесцветных серобактерий. Оказалось, что окисление соединений серы используется этими организмами для удаления Н2О2. Отложение молекулярной серы является, таким образом, результатом окисления сульфидов среды перекисью водорода, образующейся в клетке. Перекисный механизм окисления восстановленных соединений серы исключает возможность использования организмами энергии этого процесса.

Вопрос о способности бесцветных серобактерий существовать автотрофно также пока не доказан: чистые культуры могут расти только в присутствии органических соединений; не обнаружено типичных для эубактерий механизмов автотрофной ассимиляции СО2. Все это заставляет склоняться в пользу того, что бесцветные серобактерии могут существовать только хемогетеротрофно. В микроаэробных условиях некоторые штаммы Beggiatoa обнаруживают способность к азотфиксации.

Нитчатые железобактерии

На основании морфологических характеристик все железобактерии могут быть разделены на две группы: нитчатые железобактерии и одноклеточные железобактерии.

К первой группе относятся грамотрицательные нитчатые бактерии, окруженные чехлом. Наиболее широко распространены представители родов Leptothrix и Sphaerotilus (рис. 1). Нити неподвижные или передвигающиеся скольжением. В чехлах, окружающих нити, накапливаются окислы железа и марганца (Leptothrix) или только железа (Sphaerotilus и др.).

Железобактерии этой группы - облигатные аэробы, но могут удовлетворительно расти при низком содержании О2 в среде. Оптимальный рН для роста - 6-8. Единственно возможный способ существования. хемоорганогетеротрофия, при этом представители рода Sphaerotilus предпочитают условия с относительно высоким содержанием органических веществ, а многие штаммы Leptothrix - среды с низким уровнем органики.

Окисление железа и марганца и отложение их окислов в чехлах этих бактерий не связано с получением ими энергии. К окислению Fe++ при рН 6-8 могут приводить процессы как химической, так и биологической природы. Окисление марганца в этих условиях имеет биологическую природу. В обоих случаях окисление связано с действием перекиси водорода, количество которой в среде в определенных условиях может достигать 10-20 мг/л. Процесс локализован в чехлах, где концентрируются продукты метаболизма и внеклеточные ферменты. У мутантов, лишенных чехлов, накопления окислов железа и марганца не происходило. Таким образом, с помощью восстановленных форм железа и марганца обеспечивается удаление Н2О2 - токсического продукта клеточного метаболизма.

Помимо бесцветных к нитчатым железобактериям относятся и некоторыефотосинтезирующие эубактерии из группы цианобактерий и скользящих зеленых бактерий.

Нитрифицирующие бактерии

Нитрифицирующие бактерии получают энергию в результате окисления восстановленных соединений азота (аммиака; азотистой кислоты). Впервые чистые культуры этих бактерий получил С.Н.Виноградский в 1892 г., установивший их хемолитоавтотрофную природу. В IX издании Определителя бактерий Берги все нитрифицирующие бактерии выделены в семейство Nitrobacteraceae и разделены на две группы в зависимости от того, какую фазу процесса они осуществляют. Первую фазу - окисление солей аммония до солей азотистой кислоты (нитритов) - осуществляют аммонийокисляющие бактерии (роды Nitrosomonas, Nitrosococcus, Nitrosolobus и др.):

NH4+ + 1,5O2 переходит в NO2- + Н2О + 2Н+

Вторую фазу - окисление нитритов до нитратов - осуществляют нитритокисляющие бактерии, относящиеся к родам Nitrobacter, Nitrococcus и др.:

NO2- + 1/2*O2 переходит в NO3-

Группа нитрифицирующих бактерий представлена грамотрицательными организмами, различающимися формой и размером клеток, способами размножения, типом жгутикования подвижных форм, особенностями клеточной структуры, молярным содержанием ГЦ-оснований ДНК, способами существования.

Все нитрифицирующие бактерии - облигатные аэробы; некоторые виды - микроаэрофилы. Большинство - облигатные автотрофы, рост которых ингибируется органическими соединениями в концентрациях, обычных для гетеротрофов. С использованием 14С-соединений показано, что облигатныехемолитоавтотрофы могут включать в состав клеток некоторые органические вещества, но в весьма ограниченной степени. Основным источником углерода остается СО2, ассимиляция которой осуществляется в восстановительном пентозофосфатном цикле. Только для некоторых штаммовNitrobacter показана способность к медленному росту в среде с органическими соединениями в качестве источника углерода и энергии.

Процесс нитрификации локализован на цитоплазматической и внутрицитоплазматических мембранах. Ему предшествует поглощение NH4+ и перенос его через ЦПМ с помощью медьсодержащей транслоказы. Предполагается, что на первом этапе аммиак окисляется до гидроксиламина с помощью монооксигеназы, катализирующей присоединение к молекуле аммиака 1 атома О2; второй взаимодействует, вероятно, с НАД*Н2, что приводит к образованию Н2О:

NH3 + О2 + НАД*Н2 переходит в NH2OH + Н2О + НАД

Гидроксиламин далее ферментативно окисляется до нитрита:

NH2OH + О2 переходит в NO2- + Н2О + Н+

Электроны от NH2OH поступают в дыхательную цепь на уровне цитохрома с и далее на терминальную оксидазу. Их транспорт сопровождается переносом 2 протонов через мембрану, приводящим к созданию протонного градиента и синтезу АТФ. Гидроксиламин в этой реакции, вероятно, остается связанным с ферментом.

Вторая фаза нитрификации сопровождается потерей 2 электронов. Окисление нитрита до нитрата, катализируемое молибденсодержащим ферментом нитритоксидазой, локализовано на внутренней стороне ЦПМ и происходит следующим образом:

NO2- + Н2О переходит в NO3- + 2Н+ 2е

Многие хемоорганогетеротрофные бактерии, принадлежащие к родам Arthrobacter, Flavobacterium,Xanthomonas, Pseudomonas и др., способны окислять аммиак, гидроксиламин и другие восстановленные соединения азота до нитритов или нитратов. Процесс нитрификации этих организмов, однако, не приводит к получению ими энергии. Изучение природы этого процесса, получившего название гетеротрофной нитрификации, показало, что, возможно, он связан с разрушением образуемой бактериальными культурами перекиси водорода с помощью пероксидазы. Образующийся при этом активный кислород окисляет NH3 до NO3-.

Нитрифицирующие бактерии обнаружены в водоемах разного типа и в почвах, где они, как правило, развиваются совместно с бактериями, жизнедеятельность которых приводит к образованию исходного субстрата нитрификации - аммиака.

Процесс нитрификации, являясь важным звеном в круговороте азота в природе, имеет как положительные, так и отрицательные стороны. Переведение азота из аммонийной формы в нитратную способствует обеднению почвы азотом, поскольку нитраты легко вымываются из почвы. В то же время нитраты - хорошо используемый растениями источник азота. Связанное с нитрификацией подкисление почвы улучшает растворимость и, следовательно, доступность некоторых жизненно необходимых элементов, в первую очередь фосфора и железа.

Водородные бактерии

К образованию молекулярного водорода приводят разные процессы, в том числе и биологические. Активными продуцентами Н2 являются эубактерии. Также активно осуществляется и потребление Н2, важная роль в этом принадлежит водородным бактериям. Нахождение в природе и возможность размножения этих бактерий определяются рядом факторов; основные из них - наличие Н2 и аэробныеусловия.

Водородные бактерии привлекают к себе внимание возможностью практического использования: для получения кормового белка, а также ряда органических соединений (кислоты, аминокислоты, витамины, ферменты и др.).

К водородным бактериям относят эубактерии, способные получать энергию путем окисления молекулярного водорода с участием О2, а все вещества клетки строить из углерода СО2. Таким образом, водородные бактерии - это хемолитоавтотрофы, растущие при окислении Н2 в аэробныхусловиях:

Н2 + 1/2*О2 переходит в Н2О

Помимо окисления для получения энергии молекулярный водород используется в конструктивном метаболизме. На 5 молекул Н2, окисленного в процессе дыхания, приходится 1 молекула Н2, затрачиваемого на образование биомассы:

2 + 2О2 + СО2 переходит в СН2О + 5Н2О

Молекулярный водород - наиболее распространенный неорганический субстрат, используемый эубактериями для получения энергии в процессе окисления. Число бактерий, растущих хемолитотрофно на основе использования Н2 в качестве источника энергии, намного больше организмов, использующих для этой цели другие неорганические субстраты (восстановленные соединения серы, азота, железа).

Способность к энергетическому использованию Н2 может сочетаться с конструктивным метаболизмомоблигатно гетеротрофного типа (например, у представителей родов Azotobacter или Acetobacter) или происходить в строго анаэробных условиях (сульфатвосстанавливающие бактерии), что не позволяет относить обладающие этими особенностями организмы к водородным бактериям. Таким образом, водородные бактерии представляют только часть эубактерий, способных использовать Н2 для получения энергии. Водородные бактерии характеризуются способностью сочетать конструктивный метаболизм автотрофного типа с получением энергии за счет окисления Н2 с участием молекулярного кислород.

Впервые водородные бактерии были описаны А.Ф.Лебедевым и Г.Казерером (H.Kaserer) в 1906 г., а в 1909 г. С. Орла-Йенсен выделил их в самостоятельный род Hydrogenomonas.

Последующее изучение обнаружило сходство водородных бактерий с представителями разных родов гетеротрофных бактерий: Pseudomonas, Alcaligenes, Nocardia и др. Стало ясно, что водородные бактерии - не таксономическая группа, а организмы, объединяемые на основании нескольких физиологических признаков. Род Hydrogenomonas был ликвидирован, и виды, входившие в его состав, распределены по другим таксономическим группам.

К водородным бактериям относятся представители 20 родов, объединяющих грамположительные и грамотрицательные формы разной морфологии, подвижные и неподвижные, образующие споры и бесспоровые, размножающиеся делением и почкованием. Молярное содержание ГЦ-оснований ДНК водородных бактерий находится в диапазоне от 48 до 72%.

За исключением термофильных бактерий, выделенных в род Hydrogenobacter и характеризующихся облигатной хемолитоавтотрофией, все остальные водородные бактерии - факультативные формы, использующие в качестве источника углерода и энергии также разнообразные органические соединения, некоторые из них - и одноуглеродные соединения, более восстановленные, чем СО2 (окись углерода, метанол, формиат и др.). Ассимиляция СО2 происходит в восстановительном пентозофосфатном цикле. Водородные бактерии, растущие на органических соединениях, имеют тот же метаболический аппарат, что и хемоорганогетеротрофные эубактерии.

Большинство из них относится к облигатным аэробам. Однако среди облигатных аэробов преобладают виды, тяготеющие к низким концентрациям О2 в среде. Особенно чувствительны к О2 водородные бактерии, растущие хемолитоавтотрофно, а также в условиях фиксации молекулярного азота. Для некоторых водородных бактерий показана способность расти и в анаэробных условиях, используя в качестве конечного акцептора электронов вместо О2 нитраты, нитриты или окислы железа. Примером факультативно аэробных водородных бактерий может служить Paracoccus denitrificans, у которого в аэробных условиях работает электронтранспортная цепь, аналогичная митохондриальной, а в отсутствие О2 электроны с помощью соответствующих редуктаз переносятся на NO3- и NO2-, восстанавливая их до N2. Однако большая часть факультативно аэробных водородных бактерий способна к восстановлению нитратов только до нитритов.

Как известно, способность к окислению Н2 связана с наличием гидрогеназ, катализирующих реакцию: Н2переходит в 2Н+ + 2е. Гидрогеназы обнаружены у многих представителей прокариотного мира. В клетке гидрогеназы могут находиться в растворимом или связанном с мембранами состоянии. По этому признаку все изученные водородные бактерии могут быть разделены на 3 группы. Большинство содержит только одну форму фермента - связанную с мембранами. Есть виды, содержащие обе формы или только растворимую (цитоплазматическую) гидрогеназу.

Карбоксидобактерии

Карбоксидобактерии - аэробные эубактерии, способные расти, используя окись углерода (СО) в качестве единственного источника углерода и энергии. Таким свойством обладают некоторые представители родов Pseudomonas, Achromobacter, Comamonas. (Способность окислять СО обнаружена у представителей прокариот, принадлежащих к эубактериям (пурпурные несерные бактерии, цианобактерии, клостридии) и архебактериям (метанобразующие бактерии). Однако в большинстве случаев этот процесс не поддерживает рост культур и механизм его неясен).

Карбоксидобактерии могут расти автотрофно, ассимилируя СО2 в восстановительном пентозофосфатном цикле, а также использовать в качестве единственного источника углерода и энергии различные органические соединения. При выращивании на среде с СО2 в качестве единственного источника углерода большинство карбоксидобактерий энергию могут получать за счет окисления молекулярного водорода, при этом рост на среде с СО2 + Н2 происходит активнее, чем на среде с СО. Это дало основание некоторым исследователям рассматривать карбоксидобактерии как особую физиологическую подгруппу водородных бактерий. В то же время способность использовать в качестве субстрата дыхательный яд указывает на осуществление карбоксидобактериями нового типахемолитотрофного метаболизма. Кроме того, обнаружение у них ферментов и факторов, отсутствующих у водородных бактерий, неспособность некоторых карбоксидобактерий окислять Н2 и ряд других признаков позволяют сделать вывод об определенной обособленности этой группы эубактерий.

Использование СО карбоксидобактериями происходит путем его окисления в соответствии с уравнением:

СО + Н2О переходит в СО2 + 2е + 2Н+

Продукт реакции используется далее по каналам автотрофного метаболизма. (Таким образом, при выращивании карбоксидобактерий на среде с СО в качестве единственного источника углерода и энергии источником углерода служит не СО, а СО2). Теоретически суммарное уравнение окисления СО и синтеза клеточной биомассы карбоксидобактерий может быть представлено в следующем виде:

7СО + 2,5О2 + Н2О переходит в 6СО2 + (СН2О),

где (СН2О) - символ биомассы.

Из уравнения видно, что окисление СО - неэффективный способ получения энергии. Карбоксидобактерии для синтеза клеточного вещества вынуждены окислять большое количество СО: на биосинтетические процессы в в разных условиях роста идет от 2 до 16% углерода СО.

Окисление СО карбоксидобактериями осуществляется с участием по крайней мере одного специфического фермента - СО-оксидазы. Это флавопротеин, в молекуле которого содержатся молибден и FeS-центры. Фермент в клетке находится в растворимой и связанной с мембраной форме. Растворимая СО-оксидаза локализована с внутренней стороны ЦПМ. При росте карбоксидобактерий на СО в качестве единственного источника углерода и энергии СО-оксидаза выполняет следующие функции: окисляет СО до СО2, передает электроны в дыхательную цепь и участвует в синтезе НАД*Н2путем обратного переноса электронов.

Состав дыхательных цепей карбоксидобактерий аналогичен таковому водородных бактерий. Для карбоксидобактерий Pseudomonas carboxydovorans показано, что дыхательная цепь разветвлена на уровне убихинона или цитохрома b. Одна ветвь (органотрофная) содержит цитохромы b558, с и а1, вторая (литотрофная) - цитохромы b561 и о. При окислении органического субстрата электроны поступают преимущественно в органотрофную ветвь цепи, при окислении Н2 и СО - в обе. Низкая энергетическая эффективность использования СО карбоксидобактериями указывает на то, что перенос электронов по цепи в этом случае приводит к функционированию, вероятно, 1 генератора дельта мю Н+.

Одним из интересных свойств карбоксидобактерий является сам факт использования ими окиси углерода, служащей специфическим ингибитором терминальных оксидаз, таких как цитохромы типа а. Для некоторых карбоксидобактерий показана устойчивость к содержанию в атмосфере до 90% СО.

Основными источниками окиси углерода в природных условиях являются промышленное производство, транспорт, вулканическая деятельность и биологические процессы. Известно, что СО образуется в результате жизнедеятельности разных организмов (бактерии, грибы, водоросли, животные, растения). Одним из путей удаления этого токсического соединения служит использование его бактериями, и в первую очередь в наибольшей степени приспособленными для этого.

 

Сульфатредуцирующие бактерии

Физиологическую группу бактерий, восстанавливающих сульфат (их называют также десульфатирующими, сульфатредуцирующими или сульфидобразующими), отличает способность к переносу водорода с суб­страта на сульфат как конечный акцептор электронов и, таким образом, к восстановлению сульфата до сульфида. В этом процессе происходит перенос электронов, и в нем участвует цитохром с. Энергия запасается благодаря фосфорилированию в электрон-транспортной цепи в анаэ­робных условиях:

Поскольку такое восстановление сульфата обладает формальным сходством с дыханием, при котором акцептором водорода служит кис­лород, принято говорить о сульфатном дыхании, или о диссимиляционной сульфатредукции. Главным продуктом такого процесса является сероводород:

8[Н] + SO4 -» H2S + 2Н20 + 20Н-

Болышая часть сероводорода, образующегося в природе, возникает бла­годаря этой реакции. Сульфатредуцирующие бактерии являются, в от­личие от нитратредуцирующих, облигатными анаэробами, т.е. ну­ждаются в строго анаэробных условиях.

Сульфатредуцирующие бактерии-это физиологическая группа, для которой характерна способность к образованию сероводо­рода из сульфата (табл. 1). Донорами водорода служат простые низ­комолекулярные соединения, образующиеся при анаэробном разложе­нии биомассы, главным образом целлюлозы: лактат, ацетат, пропионат, бутират, формиат, этанол, высшие жирные кислоты и молекулярный водород.

По степени усвоения органических кислот различают две группы сульфатредуцирующих бактерий:

1. Бактерии, относящиеся к первой группе, окисляют донор водорода не полностью и выделяют уксусную кислоту. Таковы виды спорообра-зующего рода Desulfotomaculum (D.nigrificans, D. orientis и D. ruminis) и неспорообразующего рода Desulfovibrio (D. vulgaris, D.desulfuricans, D. gigas, D. thermophilus и другие).

2. Вторая группа включает роды и виды, часть которых может расти, используя спирты, ацетат, высшие жирные кислоты или бензоат, а другие способны даже к хемоавтотрофному росту в присутствии водорода и формиата. К этой группе относятся спорообразователи (Desulfotomaculum acetoxidans), а также неспорообразующие палочки (Desulfobacter), кокки (Desulfococcus), сардины (Desulfosarcina), ните­видные формы, передвигающиеся путем скольжения (Desulfonema), и некоторые другие бактерии.

Восстановление сульфата.

Почти все бактерии, грибы и зеленые рас­тения способны использовать в качестве источника серы сульфат. Они получают сульфид, необходимый для синтеза серусодержащих амино­кислот, путем «ассимиляционной сульфатредукции». Первая реакция на этом пути является общей как для диссимиляционного, так и для асси­миляционного восстановления сульфата. Далее при диссимиляционной сульфатредукции происходит прямое восстановление активированного сульфата, а при ассимиляционной следует еще одна реакция активации. Восстановление сульфата в клетке начинается с его активации, на кото­рую непосредственно затрачивается энергия АТР (рис. 1); с помощьюАТР-сульфурилазы (сульфатаденилтрансферазы) дифосфатный остаток АТР обменивается на сульфат:

ATP + S04 → Аденозин-5'фосфосульфат

 

 

Дифосфат (пирофосфат) расщепляется пирофосфатазой. Продуктом ак­тивации является аденозин-5-фосфосульфат (АФС). Последующие реак­ции могут быть различными. На пути ассимиляционного восстановле­ния сульфата АФС с помощью АФС-киназы и АТР фосфорилируется у ряда организмов с образованием фосфоаденозинфосфосульфата (ФАФС); лишь этот вдвойне активированный сульфат восстанавливает­ся сначала до сульфита, а затем до сульфида. При диссимиляционной сульфатредукции АФС с помощью АФС-редуктазы восстанавливается до сульфита, что сопровождается образованием AMP.

Восстановление сульфита до сульфида происходит, видимо, у разных бактерий по-разному. С помощью сульфитредуктазы сульфит прямо восстанавливается до сульфида (на что затрачивается 6 электронов) без образования промежуточных продуктов. В такого рода восстановлении как и в ассимиляционной сульфитредукции - участвуют, по-види­мому, железопорфириновые соединения (десульфовиридин, десульфору-бидин). Второй механизм состоит в последовательном трехступенчатом восстановлении сульфита с образованием промежуточных продуктов, таких как тритионат и тиосульфат (рис. 1). Предполагается, что элек­троны для восстановления сульфита доставляются цитохромами (у од­них бактерий -цитохромом Ь, у других-цитохромом с).

Фосфорилирование, сопряженное с переносом электронов. Предположе­ние о такого рода фосфорилировании у сульфатредуцирующих бакте­рий основано на данных о наличии цитохромов и железосерных белков в плазматических мембранах, а также о высоком выходе энергии. Ци-тохром с3 обладает, по сравнению с другими цитохромами, весьма низ­ким окислительно-восстановительным потенциалом (Јj = - 205 мВ) и находится на внешней поверхности мембраны или в периплазматиче-ском пространстве.

У хорошо изученных видов сульфатредуцирующих бактерий была обнаружена конститутивная гидрогеназа (Н2:цитохром-с3-оксидо-редуктаза), с помощью которой Н2 может как поглощаться и активиро­ваться, так и выделяться в окружающую среду. Некоторые сульфатре-дуцирующие бактерии растут в присутствии Н2 и сульфата как един­ственных источников энергии. Способность к восстановлению сульфата с помощью Н2 и к образованию больших количеств сероводорода, не связанному с заметным ростом, вероятно, характерна для большинства сульфатредуцирующих бактерий.

Перенос электронов с Н2 как донора, сопровождающийся восстано­влением 1 моля сульфата до 1 моля сульфида, вероятно, сопряжено с регенерацией 3 молей АТР, из которых, однако, 2 моля расходуются на активацию сульфата.

Окисление органических субстратов.

Классические сульфатредуци-рующие бактерии, которые были известны до 1975 года (например, Desulfovibrio vulgaris), окисляют органические субстраты не до Н20 и С02, а до уксусной кислоты. Эти бактерии не имеют полного цикла трикарбоновых кислот. Однако недавно было выделено несколько ви­дов, способных окислять ацетат, высшие жирные кислоты и бензоат.

Ассимиляция органических субстратов. Энергия, получаемая сульфат-редуцирующими бактериями в результате окислительного фосфорили-рования, делает возможной ассимиляцию органических веществ (орга­нических кислот, аминокислот и т.п.). Некоторые штаммы способны синтезировать клеточные компоненты из ацетата и С02, если донором водорода служит Н2. Организмы, ассимилирующие органические веще­ства в процессе окисления неорганического донора электронов, можно называть хемолитогетеротрофами. Фиксация С02 в цикле Кальвина у данной группы микроорганизмов не обнаружена.

Брожение без сульфата. Некоторые сульфатредуцирующие бактерии обладают способностью расщеплять лактат или пируват в отсутствие сульфата. Вместо окисления пирувата 4СН3-СО-СООН + H2S04 -► 4СН3-СООН + 4С02 + H2S

они осуществляют брожение с выделением Н2:

СН3-СО-СООН + Н20 → СН3-СООН + С02 + Н2

Таким образом, сульфатредуцирующие бактерии можно отнести к микроорганизмам, осуществляющим брожение.

Получение накопительных культур и выделение. Для выделения суль­фатредуцирующих бактерий необходимо использовать питательную среду, содержащую подходящий донор водорода, пригодный для асси­миляции углеродный субстрат, минеральные вещества и сульфат; необ­ходимо поддерживать анаэробные условия и достаточно низкий окисли­тельно-восстановительный потенциал (£0' = - 200 мВ) (рис. 2).

Распространение и роль сульфатредуцирующих бактерий в природе. Сульфатредуцирующие бактерии встречаются главным образом в серо­водородном иле, где органические вещества подвергаются анаэробному разложению. Эти бактерии, по-видимому, специально приспособлены к использованию продуктов неполного разложения углеводов-таких веществ, как жирные кислоты, гидроксикислоты, спирты и водород. Ос­новную массу образующегося в природе сероводорода следует считать конечным продуктом сульфатного дыхания. Загрязненные воды содер­жат от 104 до 106 сульфатредуцирующих бактерий на 1 мл, а сероводо­родный ил-до 107.

 

 

Большинство разрабатываемых месторождений серы (например, в Те­хасе, Луизиане и Мексике) имеет невулканическое происхождение; это отложения биогенной серы прошлых геологических эпох. Путем восста­новления сульфатов морской воды за счет органических отходов (сточных вод) с помощью сульфатредуцирующих бактерий можно полу­чать сероводород, а следовательно, и серу.

Большое экономическое значение имеет косвенный результат жизне­деятельности сульфатредуцирующих бактерий (например, Desulfovib-rio) - анаэробная коррозия железа. Во влажной среде ионизация желе­за может происходить и в анаэробных условиях:

(1) Окисление железа:

4Fe + 8Н+ → 4Fe2+ + 4Н2

Обычно образующаяся при этом пленка из молекулярного водорода предохраняет железо от дальнейшего разрушения. Однако в присут­ствии сульфатредуцирующих бактерий и при наличии в среде сульфатов происходит катодная деполяризация, и тогда железо окисляется даже в отсутствие кислорода;

(2) Восстановление сульфата:

2 + SO2- → H2S + 2Н20 + 20Н-

(3) Образование сульфида железа (выпадающего в осадок):

4Fe2+ + H2S + 20Н+ + 4Н20 → FeS + 3Fe(OH)2 + 6Н+

Суммарная реакция (1-3):

4Fe + БОГ + 2Н20 + 2Н+ → FeS + 3Fe(OH)2

Обусловленное такой коррозией повреждение железных труб весьма убыточно.

Способность сульфатредуцирующих бактерий использовать органи­ческие кислоты, спирты и даже молекулярный водород, образующийся при поляризации железа, в качестве доноров водорода лежит в основе способа получения накопительных культур этих бактерий (рис. 2).

Сульфатредуцирующие бактерии считают ответственными за высо­кое содержание сероводорода в глубинных слоях Черного моря (глубже 200 м). В Венеции гондолы красят обычно в черный цвет; по-видимому, это защитная мера, связанная с тем, что красители, содержащие тя­желые металлы, изменяют под влиянием H2S свой первоначальный цвет.

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.118 с.