Система нейтрализации отработавших газов — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Система нейтрализации отработавших газов

2021-12-07 14
Система нейтрализации отработавших газов 0.00 из 5.00 0 оценок
Заказать работу

В начале 1970 гг. появились первые каталитические нейтрализаторы отработавших газов, двухкомпонентные, так называемого окислительного типа. Двухкомпонентными они назывались потому, что могли нейтрализовать только два токсичных компонента - СО и СН. Происходившие реакции представляли из себя окисление (дожигание) молекул СО и СН с образованием углекислого газа и воды.

Принципиально конструкция нейтрализаторов с течением времени не менялась и представляет собой корпус из нержавеющей стали, включенный в систему выпуска до глушителя. В корпусе располагается блок носителя с многочисленными продольными порами, покрытыми тончайшим слоем вещества катализатора, которое само не вступает в химические реакции, но одним своим присутствием ускоряет их течение. Химикам известно множество катализаторов - медь, хром, никель, палладий, родий. Но самой стойкой к воздействию сернистых соединений, которые образуются при сгорании содержащейся в бензине серы, оказалась платина. Ею, в чистом виде или с добавлением палладия, стали покрывать керамические соты нейтрализаторов.

Чтобы увеличить площадь контакта каталитического слоя с выхлопными газами, на поверхность керамических сот наносится подложка толщиной 20-60 микрон с развитым микрорельефом. Под давлением ужесточения законодательства прогресс пошел дальше. Применение каталитических нейтрализаторов (КН) потянуло за собой распространение бессвинцовых бензинов, поскольку содержащийся в обычном этилированном бензине тетраэтилсвинец (ТЭС) «отравлял» платину, сводя на нет ее каталитическое действие. Автопроизводители стали переводить двигатели на неэтилированный бензин, а нефтяные кампании - увеличивать долю его выпуска. На американских автомобилях 1975 года появились транзисторные системы зажигания с высокой энергией искры и свечи с медным сердечником центрального электрода - это свело к минимуму пропуски зажигания и последующие вспышки несгоревшего топлива в нейтрализаторе, которые грозят оплавлением керамики.

С окислами азота NO ним боролись понижая температуру сгорания горючей смеси - оснащали двигатели устройствами рециркуляции отработавших газов в камере сгорания (EGR). Позднее появились трехкомпонентные системы, каталитический слой которых, как правило, содержит не только платину и палладий, но и добавку редкоземельного элемента родия. В результате химических реакций на поверхности разогретого до 600-800 °C катализатора вредные компоненты СО, СН, NО превращаются в воду, углекислый газ и азот.

Носителем в нейтрализаторе служит керамика - монолит со множеством продольных сот-ячеек, на которые нанесена специальная шероховатая подложка. Это позволяет максимально увеличить эффективную площадь контакта каталитического покрытия с выхлопными газами - до 20 тысяч кв.м. Причем вес благородных металлов, нанесенных на подложку на этой площади, составляет всего 2-3 грамма. Керамика выдерживает температуру до 800-850 °C. Но при неисправности системы питания и длительной работе на переобогащенной рабочей смеси монолит может оплавиться - тогда каталитический нейтрализатор выйдет из строя. Особенно проблематично использование керамических каталитических нейтрализаторов с карбюраторными двигателями.

В качестве носителей каталитического слоя используются и тончайшие металлические соты. Это позволяет увеличить площадь рабочей поверхности, ускорить разогрев каталитического нейтрализатора до рабочей температуры и расширить температурный диапазон до 1000-1050 °C. C появлением современных двигателей, работающих на переобедненных смесях, возросли требования к каталитическим нейтрализаторам - они должны выдерживать жесткие условия, с которыми керамика не справляется. Основную массу токсичных соединений современные двигатели выбрасывают сразу после холодного старта. Поэтому нейтрализатор стараются разместить ближе к выпускному коллектору, где он быстрее выходит на рабочий температурный режим. Появились нейтрализаторы с металлическими электрообогреваемыми сотами, которые сразу после поворота ключа в замке зажигания раскаляются при пропускании сильных токов в сотни ампер. Широкое использование нейтрализаторов стимулировало рост рынка благородных металлов: 35% потребляемой платины, 45% палладия, 90% родия идет на нужды автомобильной промышленности.

Помимо нейтрализатора, на многих японских и американских двигателях устанавливают термические реакторы. Такие устройства позволяют при подмешивании к отработавшим газам воздуха доокислить СО и СН, снижая их концентрацию за счет реакции с кислородом воздуха при температуре свыше 500 °C. Реакторы эффективны на режимах богатой смеси при больших нагрузках, не выходят из строя со временем, однако не дают полного окисления СО и СН, поэтому применяются как дополнительные устройства перед нейтрализатором. Кроме того, часто применяют и рециркуляцию отработавших газов с целью снижения выбросов окислов азота. Рециркуляция предполагает отбор выхлопных газов в количестве до 10-12% и подачу их на вход двигателя на режимах средних и полных нагрузок.

Для эффективной работы трехкомпонентного нейтрализатора нужно выдерживать состав горючей смеси в диапазоне так называемого стехиометрического отношения воздух/топливо, значение которого лежит в узких пределах 14.5-14.7. Если горючая смесь будет богаче, то упадет эффективность нейтрализации СО и СН, если беднее - окислов азота. Поддерживать стехиометрический состав горючей смеси можно управляя смесеобразованием, получая информацию о процессе сгорания, через организацию обратной связи. Для этого в выпускной коллектор поместили кислородный датчик - так называемый лямбда-зонд.

Он вступает с раскаленными выхлопными газами в электрохимическую реакцию и выдает сигнал, уровень которого зависит от количества кислорода в выхлопе. По результатам анализа, которым занимается электроника, можно корректировать состав смеси в ту или иную сторону. В качестве кислородного датчика в подавляющем большинстве систем топливодозирования используется датчик на основе двуокиси циркония. Чувствительным элементом лямбда-зонда является колпачок, сделанный из керамической двуокиси циркония.

Внутренняя и внешняя поверхности колпачка покрыты платиной или ее сплавом, что выполняет роль катализатора и токопроводящих электродов. Двуокись циркония при высоких температурах приобретает свойство электролита, а датчик становится гальваническим элементом. Принцип работы лямбда-зонда состоит в генерировании электродвижущей силы (э.д.с.), величина которой определяется соотношением парциальных давлений (содержанием свободного кислорода в отработавших газах и в окружающем воздухе). Особенностью «циркониевого» датчика является то, что при незначительных изменениях состава смеси э.д.с. на выходе скачком изменяется от нескольких милливольт до почти одного вольта. Такая характеристика датчика определяет алгоритм работы всей системы автоматического регулирования. Датчик работает в диапазоне температур 350-900 °C. Для расширения диапазона применяют датчики с электронным подогревом.

Упрощенный алгоритм работы системы коррекции можно представить в следующем виде: обогащенная смесь - сгорание - увеличение сигнала зонда - уменьшение расчетной длительности впрыска - впрыск - обедненная смесь - сгорание - уменьшение сигнала зонда - увеличение расчетной длительности впрыска - впрыск. Весь цикл непрерывно повторяется, состав смеси в системе с контуром обратной связи непрерывно изменяется.

В режиме замкнутого контура система работает только после достижения двигателем определенной температуры и прогрева кислородного датчика. Исключения составляют следующие режимы: режим максимальной мощности, режим торможения двигателем, режим ускорения, режим прогрева. На этих режимах сигнал кислородного датчика не учитывается. Введение контура коррекции проще всего реализуется в электронных системах впрыска дискретного действия. В таких системах происходит непрерывная коррекция длительности импульсов управления форсунками в соответствии с сигналами, поступающими от кислородного датчика.

В системах непрерывного действия, имеющих электронный блок управления, точная коррекция состава смеси также не вызывает затруднений и осуществляется посредством циклического изменения в небольших пределах тока, подаваемого блоком в обмотки электрогидравлического регулятора.

Наиболее сложным с точки зрения количества дополнительных конструктивных изменений в этом плане являются системы К-Джетроник и карбюраторы. В системе К-Джетроник точная коррекция состава смеси осуществляется посредством изменения давления в нижних камерах дозатора-распределителя. Такие системы (условное название К-лямбда) в достаточной степени отличаются от базовой версии. Давление топлива в нижних камерах системы К-лямбда не равно системному и может регулироваться благодаря перепуску топлива обратно в топливный бак через так называемый частотный клапан. Для управления этим клапаном используется сигнал изменяемой скважности, вырабатываемый специально вводимым в эту систему электронным блоком (скважность - отношение времени действия сигнала к времени периода повторения). Подобный принцип используется в карбюраторах с электронным управлением.

Развитием систем коррекции являются адаптивные системы с возможностью «самообучения» в процессе эксплуатации. Суть работы таких систем заключается в том, что по мере изменения характеристик различных систем и компонентов двигателя в процессе эксплуатации (например, загрязнение форсунок, уменьшение компрессии, подсос воздуха) в специальной области памяти блока управления накапливаются «поправочные коэффициенты», используемые процессором при расчете длительности времени впрыска на различных установившихся режимах. Это позволяет поддерживать стехиометрический состав смеси даже при значительных отклонениях в состоянии системы. Если обычные системы с регулированием обладают возможностью коррекции количества впрыскиваемого топлива в пределах 10-15% от базового расчетного значения, то адаптивные системы способны обеспечить диапазон до 40-50%.

Борьба с выхлопами дизеля

Дизельный выхлоп в первую очередь необходимо очищать от окислов азота, диоксида серы и сажи. Токсичные компоненты составляют 0,2-5,0% от объема отработавших газов, в зависимости от типа двигателя и режима его работы. Сажа сама по себе нетоксична, но она адсорбирует на поверхности частиц канцерогенные полициклические углеводороды, в том числе наиболее вредный и токсичный бензопирен. Сравнительно низкий уровень СО,СН и окислов азота в отработавших газах дизеля не требовал в прошлом установки специальных устройств для снижения токсичности. Однако ужесточение норм токсичности коснулось и дизелей - на многих моделях автомобилей с дизельными двигателями появились системы снижения токсичности выхлопа, включающие рециркуляцию отработавших газов, каталитический нейтрализатор и специальный сажевый фильтр. Такие фильтры через определенное время подвергаются регенерацией кислородом. Во время такой регенерации увеличивается выброс вредных веществ в атмосферу, а также возрастает тепловая напряженность двигателя.

В разработанной «Фольксвагеном» системе нейтрализации дизельного выхлопа регенерация происходит благодаря использованию диоксида азота, который содержится в катализаторе окисления. Катализатор окисления, расположенный рядом с двигателем, очищает отработавшие газы от СО и СН. В это время во втором катализаторе интенсивно образуется двуокись азота, необходимый для окисления твердых частиц. Для снижения в отработанных газах окислов азота использован накопительный катализатор окислов азота. Этот катализатор имеет специальное покрытие, которое позволяет ему как губке впитывать в себя поступающие из двигателя окислы азота. Через определенные промежутки времени необходимо очищать катализатор богатой горючей смесью.

Система очистки отработавших газов дизелей, созданная «Пежо», включает в себя блок управления работой двигателя, датчики давления, систему дозировки специальной присадки к топливу, систему питания Common rail и фильтр, который очищает от сажи и выполняет функцию катализатора. В качестве фильтрующего материала фильтра-катализатора используется карбид кремния, который имеет пористую структуру, где и накапливаются частицы сажи. Очистка фильтра осуществляется путем подачи топлива в цилиндры с запозданием, чем обеспечивается повышение температуры отработавших газов. Для снижения температуры регенерации фильтра применяется специальная присадка, подмешиваемая к топливу. Очистка фильтра происходит по команде блока управления двигателем после каждых 400-500 км пробега. Необходимость очистки фильтра определяется блоком управления на основании показаний двух датчиков давления на входе и выходе фильтра.

Таким образом, современные комплексные системы очистки отработавших газов для дизелей состоят из каталитических и жидкостных нейтрализаторов, а также сажевых фильтров. Их ресурс ограничен, а стоимость высока из-за использования катализаторов на основе благородных металлов. Один из альтернативных методов нейтрализации отработавших газов - использование низкотемпературной плазмы, которая состоит из положительно заряженных ионов и отрицательно заряженных электронов, полученных в специальных устройствах при различных видах импульсных высоковольтных электрических разрядов (коронный, барьерный), а также из нейтральных атомов и молекул.

Отработавшие газы дизеля направляются в плазмохимический реактор, предварительно пройдя сушку во влагоотделителе. В плазмохимическом реакторе к этим газам «подмешивают» масло. Под действием электрического разряда в трубках разрядного устройства частички сажи активно адсорбируют масло на своей поверхности. Для удаления сажи, частички которой находятся в масляном коконе, используется маслоотделитель. Сажа собирается в специальный контейнер, а масло после дополнительной очистки в фильтре продолжает циркулировать по замкнутому контуру. В результате удается обеспечить высокую эффективность поглощения частичек сажи - до 100% во всем диапазоне оборотов дизеля. Из маслоотделителя часть отработавших газов можно направить во впускной коллектор (рециркуляция).


 

10. Роботизированная коробка передач (обиходное название – коробка-робот) представляет собой механическую коробку передач, в которой функции выключения сцепления и переключения передач автоматизированы. Название " роботизированная коробка передач " свидетельствует о том, что водитель и условия движения формируют только входную информацию для системы управления, а работой коробки передач руководит электронный блок с определенным алгоритмом управления.

Роботизированная коробка передач сочетает в себе комфорт автоматической коробки передач, надежность и топливную экономичность механической коробки передач. При этом «робот» в большинстве своем значительно дешевле классической АКПП. В настоящее время практически все ведущие автопроизводители оснащают свои автомобили роботизированными коробками передач, устанавливая их на всю линейку моделей от малого до премиум класса.


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.