Вдоводелы, Митохондриальная Ева и ретроспективные коронации — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Вдоводелы, Митохондриальная Ева и ретроспективные коронации

2021-10-05 25
Вдоводелы, Митохондриальная Ева и ретроспективные коронации 0.00 из 5.00 0 оценок
Заказать работу

 

Женщина в Нью-Йорке может неожиданно стать вдовой из-за пули, которая пробила голову какого-то мужчины в Додж-Сити, на расстоянии более тысячи миль от нее. (Во времена Дикого Запада один из револьверов прозвали “Вдоводелом”. Порой даже самый внимательный осмотр места преступления не позволит установить, оправдал ли конкретный револьвер в конкретном случае свое прозвище.) В этом примере пространство и время преодолеваются благодаря условной природе взаимоотношений в браке, где событие прошлого, то есть свадьба, создает постоянную связь – формальную, а не каузальную, – которая не разрывается, несмотря на последующие скитания или несчастья (к примеру, случайную потерю обручального кольца или уничтожение свидетельства о браке).

Система генетического воспроизводства естественна, а не условна, но работает как часы, что систематически позволяет нам формально размышлять о каузальных цепочках, которые растягиваются на миллионы лет и выявить и отследить которые в ином случае было бы практически невозможно. Это дает нам возможность интересоваться более дистанцированными и невидимыми на местном уровне отношениями, чем формальные брачные отношения, а также активно о них рассуждать. Видообразование, как и брак, подкрепляется строгой, формально определяемой системой взглядов, но, в отличие от брака, не имеет наблюдаемых условных признаков – свадеб, колец, свидетельств. Как мы только что видели, феномен видообразования также удивительно “дистанционен” в пространстве и времени. Постепенно границы видов размываются, поэтому мы лишь ретроспективно (и произвольно) можем назначить отдельный организм из всей совокупности на роль первого млекопитающего (так что не стоит и беспокоиться). Чтобы лучше изучить это свойство видообразования, стоит сначала обратить внимание на другой пример ретроспективной коронации – присвоение титула Митохондриальной Евы, которое нельзя считать произвольным.

Границы между отдельными организмами четче, а следовательно, своеобразие отдельных организмов очевиднее своеобразия видов, но и здесь наблюдается множество промежуточных вариаций. Возьмем самый поразительный пример: в вашем теле примерно десять триллионов клеток, и девять из десяти этих клеток – не человеческие! Да, симбионты тысяч видов превосходят по численности ваши собственные клетки – клетки, которые произошли от зиготы, сформированной в результате союза ваших родителей. Среди этих симбионтов не только бактерии, но и эукариоты, как одноклеточные микробы, так и многоклеточные организмы: грибки, клещи у вас на ресницах и в других местах организма, микроскопические и более крупные черви – чего там только нет. Вы представляете собой ходячую экосистему. Хотя некоторым гостям мы не рады (грибкам, вызывающим эпидермофитию стоп, а также бактериям, лишающим дыхание свежести и стремящимся к любой инфекции), другие настолько важны, что вы умрете, если сумеете выселить всех своих квартирантов. Поскольку эти клетки-симбионты, как правило, гораздо меньше человеческих, на вес вы в основном человек, однако их совокупную массу не назвать ничтожной – наберется пара килограммов, а может, даже все пять. Существуют также вирусы, которых еще больше.

И все же, несмотря на ваши пористые границы, вы – как и остальные отдельные организмы – легко отличимы от других. Порой мы можем назвать конкретный организм, который исполнил конкретную роль в эволюционной истории. Один из самых знаменитых подобных организмов – Митохондриальная Ева. Это женщина, которая по женской линии является ближайшим прямым предком каждого человека, живущего сегодня. В клетках каждого из нас содержатся митохондрии, которые передаются только по материнской линии, поэтому все митохондрии во всех клетках всех живущих сегодня людей – прямые потомки митохондрий в клетках конкретной женщины. Ребекка Канн, Марк Стоункинг и Аллан Вильсон (1987) назвали ее Митохондриальной Евой.

Митохондриями называются крошечные внутриклеточные органеллы, которые играют важнейшую роль в обмене веществ, извлекая энергию из пищи и используя ее во всех начинаниях тела. Митохондрии обладают собственной ДНК, что и свидетельствует об их симбиотическом происхождении несколько миллиардов лет назад. Анализируя паттерны митохондриальной ДНК различных живущих сегодня людей, ученые сумели определить, когда примерно жила Митохондриальная Ева и даже где она жила. Сначала считалось, что Митохондриальная Ева жила в Африке около трехсот тысяч лет назад, однако недавно эти данные были скорректированы: она жила (почти наверняка в Африке) всего двести тысяч лет назад. Определить, где и когда жила Митохондриальная Ева, гораздо сложнее, чем установить сам факт ее существования, в котором не сомневается ни один биолог. Рассмотрим, что нам известно о Митохондриальной Еве, не заостряя внимания на спорных моментах. Мы знаем, что у нее было по меньшей мере две дочери, дочери которых тоже выжили. (Если бы у нее была всего одна дочь, корона Митохондриальной Евы досталась бы именно этой дочери.) Чтобы не путать ее титул с собственным именем, давайте назовем ее Ами. Ами носит титул Митохондриальной Евы, потому что она стала матерью-прародительницей всех современных людей. Важно не забывать, что во всех остальных отношениях в Митохондриальной Еве, вероятно, не было ничего особенного или уникального: она совершенно точно не была ни первой женщиной, ни основательницей вида Homo sapiens. До нее жило множество женщин, которые, без сомнения, принадлежали к нашему виду, однако ни одна из них, как оказалось, не стала самым недавним источником митохондрий всех живущих сегодня людей. Кроме того, хотя у Митохондриальной Евы были дочери и внучки, вероятно, она не была заметно сильнее, быстрее, красивее или плодовитее других женщин ее времени.

Чтобы подчеркнуть, насколько непримечательной, скорее всего, была Митохондриальная Ева – то есть Ами, – допустим, что завтра, много тысяч поколений спустя, по земле распространится новое опасное заболевание, которое за несколько лет истребит 99 процентов человечества. Выжившие, которым повезло иметь какую-то врожденную сопротивляемость к смертельному вирусу, вероятно, будут состоять в достаточно близком родстве. Их ближайшим общим прямым предком по женской линии – назовем ее Бетти – будет какая-то женщина, жившая на сотни тысяч поколений позже Ами, и корона Митохондриальной Евы задним числом перейдет к ней. Возможно, именно она была источником мутации, которая несколько веков спустя помогла спасти вид от вымирания, но ей самой это, вероятно, не принесло никакой пользы, поскольку агрессивной формы вируса, которой противостоит мутация, тогда еще не существовало. Суть в том, что короновать Митохондриальную Еву можно только задним числом. Ее ключевая роль в истории определяется не только случайностями в период жизни Ами, но и последующими случайностями. Это потрясающее совпадение! Если бы дядя Ами не спас ее от утопления, когда ей было три года, никого из нас (именно с нашей митохондриальной ДНК, которую мы унаследовали от Ами) вообще бы не было! Если бы все внучки Ами умерли от голода в младенчестве, как случалось в то время со многими детьми, мы бы тоже не появились на свет.

Согласно той же логике существует – должен существовать – и Адам, ближайший прямой предок каждого живущего сегодня мальчика и мужчины по мужской линии. Его можно назвать Y-хромосомным Адамом, поскольку все наши Y-хромосомы передаются по отцовской линии, подобно тому как митохондрии передаются по материнской линии[57]. Был ли Y-хромосомный Адам мужем или любовником Митохондриальной Евы? Исключено. Отцовство требует гораздо меньше времени и энергии, чем материнство, а следовательно, логически возможно, что Y-хромосомный Адам жил весьма недавно и был очень, очень активен в спальне – утирая нос Эрролу Флинну. Если самому старому живущему сегодня мужчине, скажем, 110 лет, логически возможно, что Y-хромосомным Адамом был его отец, Дон Жуан начала двадцатого века, который также является отцом, дедом, прадедом и т. д. всех живущих сегодня более молодых мужчин. В конце концов, мы, мужчины, производим миллиарды сперматозоидов, по сотне миллионов при каждой эякуляции, поэтому Y-хромосомный Адам всего за неделю мог бы произвести достаточное количество спермы, чтобы стать отцом всему человечеству (в принципе)! Однако если учесть все генетические различия в мужских Y-хромосомах по всему миру и рассчитать, сколько времени потребуется для накопления подобных мутаций, мы можем сказать, что Y-хромосомный Адам жил чуть меньше ста тысяч лет назад. И снова, если бы чума унесла, скажем, половину мужского населения, вероятнее всего, корона Y-хромосомного Адама перешла бы к прародителю, который жил гораздо менее давно[58].

Любопытный факт о любом отдельном организме – будь то вы, я, ваша собака или ваша герань – заключается в том, что он потенциально может основать новый вид, стать первым в длинном ряду кактамихов, но только сотни или тысячи поколений спустя кактамихи достаточно выделятся из общей массы, чтобы их признали отдельным видом, так что ко времени коронации вы, я, ваша собака или герань давно обратятся в прах. Ваши родители, таким образом, могут стать ближайшими общими предками всех представителей двух видов гоминид, но не радуйтесь раньше времени. Чихуахуа и немецкий дог принадлежат к одному виду Canis familiaris, но если цивилизация падет, а их потомки одичают, они с большей вероятностью выделятся в два отдельных вида, чем, скажем, бигли и бассет-хаунды, поскольку без человеческого вмешательства оплодотворение чихуахуа немецким догом – или немецкого дога чихуахуа – маловероятно. Вполне вероятно, однако, что обе генеалогии вымрут, как происходило со множеством генеалогий на протяжении тысячелетий, прежде чем это произойдет.

По оценкам, более 99 процентов всех организмов, которые когда-либо жили на земле, умерли, не оставив потомства. И все же вы живете, а это значит, что ни один из миллиардов ваших предков, от одноклеточных организмов до червей, рыб, рептилий, млекопитающих и приматов, не умер бездетным! Как же вам повезло! Само собой, каждая травинка, каждый комар, каждый слон и каждая маргаритка могут похвастаться столь же длинной и славной генеалогией.

 

Циклы

 

Всем знакомы крупномасштабные циклы природы: день-ночь-день; лето-осень-зима-весна-лето-осень-зима-весна; цикл испарения воды и выпадения осадков, благодаря которому снова наполняются озера, становятся полноводными реки и восстанавливаются запасы воды, питающие все живое на нашей планете. Но не все понимают, что эти циклы – в каждом пространственном и временном масштабе, от атомного до астрономического – выступают в качестве скрытых двигателей, приводящих в действие все удивительные природные явления. В 1861 г. Николаус Отто сконструировал и продал первый работающий бензиновый двигатель внутреннего сгорания, а в 1897 г. свой двигатель представил Рудольф Дизель, и эти блестящие изобретения изменили мир. В основе работы каждого из двигателей лежит цикл – четырехтактный цикл Отто и двухтактный цикл Дизеля, – который производит некоторое действие и затем возвращает систему в исходное положение, чтобы она была готова работать дальше. Механика этих циклов весьма оригинальна – она была открыта и оптимизирована в ходе цикла НИОКР, растянувшегося на несколько сотен лет. Еще более элегантным, микроминиатюзированным двигателем стал цикл Кребса, открытый в 1937 г. Хансом Кребсом, но изобретенный за миллионы лет эволюции на заре жизни. Это химическая реакция, имеющая восемь стадий и превращающая топливо – пищу – в энергию в процессе метаболизма, который имеет критическую значимость для всех живых организмов, от бактерий до секвой.

Биохимические циклы вроде цикла Кребса отвечают за все движение, рост, саморегенерацию и воспроизводство в живом мире. Они представляют собой колесики внутри колесиков внутри колес, механизм с триллионами подвижных частей, каждый из элементов которого необходимо перематывать, восстанавливать в исходном положении, чтобы он готов был снова выполнять свою функцию. Все эти циклы оптимизированы великим дарвиновским циклом воспроизводства, в котором поколение за поколением на протяжении миллионов лет выбираются удачные усовершенствования.

В совершенно другом масштабе наши предки обнаружили эффективность циклов, сделав один из важнейших успехов ранней истории человечества: распознав роль повторений в процессе производства. Если взять палку и провести по ней камнем, не произойдет практически ничего – разве что на дереве появится пара царапин. Если вернуть камень на исходную позицию и повторить движение, снова почти ничего не изменится, как бы вы ни старались. Даже после сотни повторений смотреть будет не на что. Но если точно так же провести камнем по палке несколько тысяч раз, палка превратится в прямое древко стрелы. Накапливая незаметные изменения, цикличный процесс приводит к созданию нового. Необходимая для осуществления подобных проектов комбинация дальновидности и самоконтроля тоже была человечеству в новинку и свидетельствовала о большом шаге вперед от преимущественно инстинктивных строительных и созидательных процессов, наблюдаемых у других животных. А эта новизна, в свою очередь, была продуктом дарвиновского цикла, подкрепленного более быстрым циклом культурной эволюции, в ходе которого техника передавалась потомству не на генетическом уровне, а распространялась среди не связанных родством людей, которые научились имитации.

Первый предок, который отполировал камень, сделав из него ручной топор приятной глазу симметричной формы, должно быть, в процессе этого выглядел глупо. Он сидел, часами точа свой камень, но это ни к чему не приводило. Однако бесконечные бездумные повторения приводили к постепенным совершенствованиям, не заметным невооруженным глазом, ведь глаз был создан эволюцией, чтобы замечать изменения, происходящие гораздо быстрее[59]. Эта кажущаяся тщетность порой сбивала с толку искушенных биологов. В прекрасной книге “Биологический фактор” специалист по молекулярной и клеточной биологии Деннис Брэй (2009) описывает циклы нервной системы:

 

На типичном сигнальном пути белки постоянно модифицируются и восстанавливаются. Киназы и фосфаты непрестанно работают, подобно муравьям, добавляя к белкам фосфатные группы и удаляя их снова. Казалось бы, в этом нет никакого толка, особенно если учесть, что каждый цикл добавления и удаления стоит клетке одной молекулы АТФ – одной единицы драгоценной энергии. Цикличные реакции подобного рода изначально даже назывались “футильными”[60]. Однако это прилагательное некорректно. Добавление фосфатных групп к белкам – самая типичная реакция в клетках, и она лежит в основе многих осуществляемых ими вычислений. Получается, что эта циклическая реакция вовсе не бесполезна, поскольку она снабжает клетку важнейшим ресурсом: гибким и быстро настраиваемым механизмом. [p. 75]

 

Слово “вычисления” выбрано очень удачно. Еще не прошло и ста лет с тех пор, как программисты начали исследовать пространство всех возможных вычислений, но пока их урожай изобретений и открытий состоит из миллионов циклов внутри циклов внутри циклов. Как выясняется, вся “магия” познания зависит, как и сама жизнь, от циклов внутри циклов повторяющихся, “реципрокных”, неосознанных информационно-трансформационных процессов в диапазоне от наноуровневых биохимических циклов в каждом нейроне и циклов перебора предиктивного кодирования систем восприятия информации (блестящее исследование см. в работе Clark 2013) до цикла сна всего мозга, крупномасштабных волн церебральной активности и восстановления, которые фиксируются на ЭЭГ. Секрет совершенствования в любой сфере жизни один: практика, практика, практика.

Важно помнить, что дарвиновская эволюция представляет собой лишь один тип цикла накопления и совершенствования. Есть и множество других. Проблема происхождения жизни может казаться неразрешимой (“неприводимо сложной” – Behe 1996), если утверждать, как делают сторонники теории разумного замысла, что, поскольку эволюция путем естественного отбора полагается на воспроизводство, дарвиновского ответа на вопрос, как появился первый организм, способный к воспроизводству, просто не может быть. Безусловно, он был невероятно сложен и прекрасно спроектирован – должно быть, произошло чудо. Если представить добиологический, дорепродуктивный мир безликим хаосом химических веществ (наподобие разрозненных частей самолета, собираемых ураганом, в который нас заставляют поверить креационисты), проблема действительно внушает страх, но если вспомнить, что ключевой процесс эволюции – циклическое повторение (и прекрасно отточенное, оптимизированное генетическое копирование – лишь частный его случай), у нас появится способ превратить эту тайну в загадку: как все эти сезонные, водные, геологические и химические циклы, повторяющиеся миллионами лет, постепенно накопили предпосылки для появления биологических циклов? Вероятно, первая тысяча “проб” была бесполезна – фактически все эти пробы стали осечками. Но, как говорит нам невероятно чувственная песня Джорджа Гершвина и Бадди ДеСильвы, всегда лучше проверить, что случится, если “сделать это снова” (и снова, и снова)[61].

Таким образом, сталкиваясь с очевидным волшебством мира живой природы и сознания, лучше всего поискать в нем циклы, которые выполняют всю тяжелую работу.

 


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.027 с.