Характеристика микроциркуляции — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Характеристика микроциркуляции

2022-08-20 28
Характеристика микроциркуляции 0.00 из 5.00 0 оценок
Заказать работу

§ Общее число капилляров в организме человека — около 40 млрд

§ Общая эффективная обменная поверхность капилляров — около 1000 м2

§ Плотность капилляров в различных органах варьирует на 1 мм3 ткани от 2500-3000 (миокард, головной мозг, печень, почки) до 300-400/мм3 в фазных единицах скелетных мышц, до 100/мм3 в тонических единицах и менее в костной, жировой и соединительной тканях

§ Обменный процесс в капиллярах главным образом происходит путем двухсторонней диффузии и фильтрации/реабсорбции

В состав микроциркуляционной системы входят: терминальные артериолы, прекапиллярный сфинктер, собственно капилляр, посткапиллярная венула, венула, мелкие вены, артериоловенулярные анастомозы.

Рис. Гидродинамические характеристики сосудистого русла

Обмен веществ через капиллярную стенку регулируется с помощью фильтрации, диффузии, абсорбции и пиноцитоза. Кислород, диоксид углерода, жирорастворимые вещества легко проходят через капиллярную стенку. Фильтрация — процесс выхода жидкости из капилляра в межклеточное пространство, а абсорбция — обратное поступление жидкости из межклеточного пространства в капилляр. Эти процессы осуществляются в результате разницы гидростатического давления крови в капилляре и интерстициальной жидкости, а также благодаря изменению онкотического давления плазмы крови и интерстициальной жидкости.

В состоянии покоя на артериальном конце капилляров гидростатическое давление крови достигает 30-35 мм рт. ст., а на венозном конце снижается до 10-15 мм рт. ст. В интерстициальной жидкости гидростатическое давление отрицательное и составляет -10 мм рт. ст. Разность гидростатического давления между двумя сторонами стенки капилляра способствует переходу воды из плазмы крови в интерстициальную жидкость. Онкотическое давление, создаваемое белками, в плазме крови составляет 25-30 мм рт. ст. В интерстициальной жидкости содержание белка меньше и онкотическое давление также ниже, чем в плазме крови. Это способствует передвижению жидкости из интерстициального пространства в просвет капилляра.

Диффузный механизм транс капиллярного обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Активный механизм обмена обеспечивается эндотелиальными клетками капилляров, которые с помощью транспортных систем в их мембранах переносят определенные вещества и ионы. Пиноцитозный механизм способствует транспорту через стенку капилляра крупных молекул и частиц клеток путем эндо- и экзопиноцитоза.

Регуляция капиллярного кровообращения происходит за счет влияния гормонов: вазопрессина, норадреналина, гистамина. Вазопрессин и норадреналин приводят к сужению просвета сосудов, а гистамин — к расширению. Сосудорасширяющим свойством обладают простагландины и лейкотриены.

72. Гемодинамика в венах. Факторы венозного возврата крови к сердцу.

Основной функцией вен является обеспечение оттока крови, насыщенной углекислым газом и продуктами распада. Кроме этого, в кровеносную систему по венам попадают различные гормоны из желез внутренней секреции и питательные вещества из желудочно-кишечного тракта. Вены регулируют общее и местное кровообращение.

Процесс циркуляции крови по венам и по артериям сильно разнится. В артерии кровь попадает под давлением сердца во время его сокращения (около 120 мм рт. ст.), в венах же давление составляет лишь 10 мм рт. ст. Движение крови в венах происходит прежде всего вследствие разности давления крови в мелких и крупных венах (градиент давления), т. е. в начале и конце венозной системы. Эта разность, однако, невелика, и потому кровоток в венах определяется рядом добавочных факторов. Одним из них является то, что эндотелий вен образует клапаны, пропускающие кровь только по направлению к сердцу. Скелетные мышцы, сокращаясь, сдавливают вены, что вызывает передвижение крови; обратно кровь не идет вследствие наличия клапанов. Этот механизм перемещения крови в венах называют мышечным насосом.

Вспомогательные факторы:

1. замкнутость сердечно-сосудистой системы;

2. разность давления в аорте и полых венах;

3. эластичность сосудистой стенки (превращение пульсирующего выброса крогви из сердца в непрерывный кровоток);

4. клапанный аппарат сердца и сосудов, обеспечивающий однонаправленное движение крови;

5. наличие внутригрудного давления - "присасывающее" действие, обеспечивающее венозный возврат крови к сердцу.

Факторы, участвующие в формировании венозного возврата:

1 группа представлена факторами, которые объединяет общий термин «vis a tegro», действующие сзади.

- 13% энергии сообщенной потоку крови сердцем

- сокращение скелетной мускулатуры («мышечное сердце», «мышечная венозная помпа»)

- переход жидкости из ткани в кровь в венозной части капилляров

- наличие клапанов в крупных венах препятствует обратному току крови

- констрикторные (сокротительные) реакции венозных сосудов на нервные и гуморальные воздействия

2 группа представлена факторами, которые объединяет общий термин «vis a fronte», действующие спереди:

- присасывающая функция грудной клетки (при вдохе отрицательно давление в плевральной полости увеличивается и это приводит снижению центрального венозного давления- ЦВД, т.е. к ускорению кровотока в венах)

- присасывающая функция сердца осуществляется за счет понижения давления в правом предсердии (ЦВД) до нуля в диастолу.

Снижение ЦВД до –4 мм.рт.ст. ведет усилению венозного возврата, а далее не влияет, при ЦВД более12 мм.рт.ст. венозный возврат крови к сердцу тормозиться. Изменение венозного давления на несколько мм.рт.ст. ведут к увеличению притока крови в 2-3 раза

От венозного возврата крови к сердцу зависит наполнение крови сердца в диастолу (конечнодиастолический объем), а значит, это опосредовано влияет, особенно при нагрузках, на величину ударного объема через изменение резервного объема, и как следствие, - на величину МОК. Эти изменение приводят к соответствующим изменениям АД.

73. Венозное давление, его величина в разных участках тела человека, при изменениях положения тела в пространстве, при вдохе и выдохе.

74. Венный пульс (флебограмма). Происхождение зубцов флебограммы.

В крупных венах (чаще всего яремных венах) вблизи сердца отмечаются пульсовые колебания — венный пульс. Обусловлен затруднением притока крови из вен в сердце во время систолы предсердий и желудочков, давление внутри вен повышается и происходят колебания их стенок.

Запись венного пульса называется флебограммой. Компоненты:

- а – систола правого предсердия, сопровождается затруднением оттока из вен

- с – возникает в начале систолы правого желудочка при закрытии трехстворчатого клапана

- х – отражает ускоренный отток крови из магистральных вен в расслабляющееся предсердие

- v – повышение давления при закрытом трехстворчатом клапане в результате наполнения правого предсердия и затруднения оттока крови из вен.)

- у – обусловлена быстрым поступлением крови из правого предсердия в желудочек во время общей диастолы сердца (волна диастолического коллапса).

 

 

 

75. Регуляция артериального давления как интегрального параметра системной гемодинамики. Базальный тонус сосудов, его субстрат и природа.

 Факторы, влияющие на АД:

1) работа сердца,

2) просвет сосудов,

3) объем циркулирующей крови (ОЦК)

4) вязкость крови (при неизменной длине сосудов).

Сосуды состоят из гладких мышц, сокращение которых, в отличие от скелетных мышц, характеризуются меньшей силой, большей продолжительностью и отсутствием утомления.

В стенке сосудов различают три типа гладкомышечных клеток:

- моноунитарные;

- мультиунитарные;

- клетки промежуточного типа.

Моноунитарные клетки характеризуются низким потенциалом покоя, высокой проницаемостью для Na+, автоматизмом, наличием 70 нексусов (мест тесного контакта одной клетки с другой).

Мультиунитарные гладкомышечные клетки по строению приближаются к скелетной мускулатуре, имеют слабовыраженные нексусы, не обладают автоматизмом, на них заканчиваются сосудодвигательные нервы.

Клетки промежуточного типа по своим свойствам сходны с моно- и мультиунитарными. Распределение этих клеток в разных сосудах неравномерное. Моноунитарные преобладают в мелких сосудах мышечного типа (артериолах и мелких артериях), мультиунитарные – в крупных сосудах. Таким образом, чем крупнее сосуд, тем ниже его способность к автоматизму.

Гольц и Бейлис в 1902 г. установили, что если изолировать сосуд (т.е. вырезать его из организма и поместить в физиологический раствор), то он не теряет своей упругости, полностью не расслабляется и сохраняет тонус. Бейлис назвал это состояние основным или базальным тонусом.

Базальный тонус (БТ) – это небольшое напряжение стенок сосуда, сохраняющееся даже в изолированном состоянии и создающееся сокращением самих гладких сосудистых мышечных волокон.

Основным механизмом, определяющим базальный тонус сосудов, является автоматизм моноунитарных гладких мышц. Автоматизм есть способность клеток к самовозбуждению без каких-либо внешних воздействий. Причина его не до конца изучена. Особенно высоким базальным тонусом обладают сосуды мозга, почек, кишечника, сердца. Низкий базальный тонус – в сосудах кожи, легких.

Базальный тонус может усиливаться или уменьшаться. В целостном организме БТ может увеличиваться при повышении давления внутри сосуда: чем выше давление внутри сосуда, тем больше сила сокращения его стенки (феномен Бейлиса). Механизм феномена Бейлиса объясняется законом Франка-Старлинга (сила сокращения гладкой мышцы зависит от ее исходной длины: чем больше длина мышцы, или давление крови внутри сосуда, тем больше сила сокращения мышцы).

76. Собственная (местная) регуляция тонуса сосудов. Роль эндотелиальных факторов в механизмах вазодилатации и вазоконстрикции.

Регионарный (местный) направлен на обеспечение адекватного кровоснабжения отдельного органа («регуляция для себя»).

Местная регуляция определяется функциональным состоянием органа: находится он в покое или в рабочем состоянии («рабочая» гиперемия).

В состоянии покоя местная регуляция обеспечивает минимальное кровоснабжение органа независимо от колебаний системного артериального давления. При повышении АД срабатывает феномен Бейлиса: базальный тонус сосудов увеличивается, они суживаются и кровоснабжение органа остается на прежнем уровне. При понижении АД сосуды расширяются, сохраняя кровоток в неработающем органе на прежнем уровне.

«Рабочая» гиперемия – увеличение кровотока в функционирующем органе. В работающем органе происходят определенные сдвиги (ацидоз, гиперкапния, гипоксемия, гипертермия, гиперосмия), которые снижают БТ сосудов работающего органа. При понижении базального тонуса сосуды расширяются и кровоснабжение органа увеличивается.

Интрасосудистая регуляция осуществляется также за счет периферической нервной системы – это нервные клетки Догеля (I, II III типа), расположенные в адвентиции сосудов. Клетки Догеля образуют собственную периферическую рефлекторную дугу (клетки I типа – двигательные, клетки II типа – чувствительные и клетки III типа – вставочные).

Эндотелий сосудов обладает способностью синтезировать и выделять факторы, вызывающие расслабление или сокращение гладких мышц сосудов в ответ на разного рода стимулы

Общая масса(500г), высокая секреторная способность эндотелиальных клеток позволяют рассматривать эту «ткань» как своеобразный эндокринный орган (железу).

Клетки сосудистого эндотелия синтезируют и выделяют через апикальную и базальную мембраны три группы гормонов:

- сосудосуживающие (эндотелины, тромбоксаны),

- сосудорасширяющие (оксид азота, гиперполяризующий фактор, простагландины)

- факторы адгезии и агрегации клеточных элементов.

Среди сосудорасширяющих гормонов эндотелия основное место по выраженности и распространенности эффекта занимает оксид азота (N0), постоянно образующийся из L-аргинина под влиянием фермента NO-син-тетазы. Одним из стимулов, активирующих фермент и образование оксида азота, является механическое растяжение стенки сосудов. Активация фермента и синтез оксида азота происходят при действии на мембранные рецепторы эндотелиоцитов ацетилхолина,гистамина, атф, повышения концентрации Са2+.

К числу факторов регуляции адгезии и агрегации клеток относятся многочисленные интегрины и селектины, образуемые клетками эндотелия.

Эндотелиалъный гиперполяризующий фактор также вызывает дилатацию артериальных и венозных сосудов, но отличается от N0 механизмом действия — способностью активировать ионные каналы (К+,Сl) и снижать возбудимость эндотелиальных клеток.

Вазодилатирующий эффект N0 опосредуется активацией образования в гладкомышечных клетках цГМФ. Оксид азота также подавляет вазоконстрикторное действие ангиотензина-II. Синтезированный клетками эндотелия оксид азота выделяется не только через базальную мембрану в сторону гладкомышечных клеток кровеносных сосудов, но и через апикальную мембрану, где тормозит адгезию тромбоцитов и лейкоцитов крови к эндо-телиальной выстилке стенки сосуда. Антиагрегантное действие оксида азота отчасти опосредовано простациклином, образующимся в эндотелии. В нервной системе N0 является модулятором синаптической передачи, так как выявлено его поступление в синаптическую щель и показано инги-бирующее влияние на выделение медиаторных аминокислот.

77. Дистанционная нервная регуляция тонуса сосудов. Сосудосуживающие и сосудорасширяющие нервы. Механизмы нейрогенной вазоконстрикции и вазодилатации.

Нервная регуляция сосудистого тонуса осуществляется сосудосуживающими и сосудорасширяющими нервами.

Сосудосуживающими являются симпатические нервы. Первым их сосудосуживающее влияние обнаружил в 1851 г. К.Дернар, раздражая шейный симпатический нерв у кролика. Тела вазоконстрикторных симпатических нейронов расположены в боковых рогах грудных и поясничных сегментов спинного мозга. Преганглионарные волокна заканчиваются в паравертебральных ганглиях. Идущие от ганглиев постганглионарные волокна образуют на гладких мышцах сосудов а-адренергические синапсы. Симпатические вазоконстрикторы иннервируют сосуды кожи, внутренних органов, мышц. Центры симпатических вазоконстрикторов находятся в состоянии постоянного тонуса. Поэтому по ним поступают возбуждающие нервные импульсы к сосудам. За счет этого иннервируемые ими сосуды постоянно умеренно сужены.

К сосудорасширяющим относится несколько типов нервов:

1) Сосудорасширяющие парасимпатические нервы. К ним относится барабанная струна, расширяющая сосуды подчелюстной слюнной железы и парасимпатические тазовые нервы.

2) Симпатические холинергические вазодилататоры. Ими являются симпатические нервы, иннервирующие сосуды скелетных мышц. Их постганглионарные окончания выделяют ацетилхолин.

3) Симпатические нервы, образующие на гладких мышцах сосудов бетта-адренергические синапсы. Такие нервы имеются в сосудах легких, печени, селезенки.

4 ) Расширение сосудов кожи возникает при раздражении задних корешков спинного мозга, в которых идут афферентные нервные волокна. Они и вызывают вазодилатацию. При химическом или механическом раздражении кожи возникает местная сосудорасширяющая реакция, в основе которой лежит так называемый аксон-рефлекс:

Расширение сосудов в этом случае связано с тем, что возбуждение от кожных рецепторов распространяется по чувствительным волокнам не только к спинному мозгу (ортодромно), но также по эфферентным коллатералям к артериолам данного кожного участка (антидромно). В нервном окончании, подходящем к кровеносному сосуду в качестве медиатора выделяется одно из сильных сосудорасширяющих веществ: гистамин, брадикинин, АТФ, вещество Р, брадикинин.

И, наконец, расширение большинства артерий и артериол может осуществляться путём снижения частоты импульсов, посылаемых вазоконстрикторным центром периферическим сосудам по симпатическим сосудосуживающим волокнам.

Вазоконстрикция. Впервые сосудосужи­вающее влияние симпатических нервов вы­явил киевский физиолог А.Вальтер (1842) в опыте на лягушке. Он обнаружил, что пере­резка седалищного нерва ведет к расшире­нию сосудов конечности, а раздражение пе­риферического отрезка этого нерва вызывает сужение сосудов конечности. Однако более известен опыт К.Бернара (1852) с перерезкой симпатического нерва на одной стороне шеи кролика. Как выяснилось, такая перерезка приводит к покраснению и потеплению уха на оперированной стороне. Результаты опыта свидетельствуют о том, что симпатические нервы являются сосудосуживающими и нахо­дятся в состоянии постоянного тонуса. Сосу­досуживающее влияние симпатического нерва подтверждается также и тем, что его раздражение вызывает побледнение и охлаж­дение уха кролика.

Прессорные рефлексы сосудов скелетных мышц и органов брюшной полости выраже­ны значительно больше, нежели у сосудов мозга, легких и сердца; в сосудах скелетных мышц — больше, чем в сосудах органов брюшной полости, в сосудах задних конеч­ностей — больше, нежели в сосудах передних конечностей (рис. 13.23).

Раздражение симпатических волокон вызы­вает значительное сужение сосудов кожи, мышц, органов брюшной полости, жировой ткани. Слабее эффект выражен в сосудах сердца, легких и мозга, что объясняется, по-видимому, не только малым числом иннер-вированных а,-рецепторов, но и, возможно, меньшей плотностью симпатической иннер­вации сосудов. Возбуждение симпатических нервов вызывает сужение артериол примерно на 1А, а вен — на ]/б. Блокада или перерезка симпатических сосудосуживателей может увеличить объем крови в органах на 20 %. Ва-зоконстрикторное и стимулирующее сердце влияния симпатической нервной системы сильнее действия катехоламинов надпочеч­ников.

Частота импульсов, идущих по симпа­тическим нервам к сосудам, составляет 1 — 3 имп/с Если раздражать периферический отрезок перерезанного симпатического нерва с частотой 1—2 имп/с, то расширившиеся в результате перерезки сосуды суживаются до исходного диаметра. Увеличение частоты раздражений нерва ведет к еще большему су­жению сосудов, а урежение раздражающих импульсов сопровождается расширением кровеносных сосудов. При частоте раздраже­ния нерва 6—10 имп/с наблюдается макси­мальное сужение большинства кровенос­ных сосудов. При прессорном рефлексе мак­симальная импульсация в симпатическом нерве — 12—15 имп/с.

Сосудистые рецепторы. Вазоконстрикция во всех органах осуществляется с помощью а-адренорецепторов, вазодилатация — по­средством р-адренорецепторов (рис. 13.24). Длина постганглионарных ветвей аксона ад-ренергического нейрона достигает 30 см, и на всем его протяжении из его расширений, располагающихся по 250—300 на 1 мм, выде­ляются катехоламины. Расстояние между ва-рикозами нервного волокна и гладкомышеч-ными волокнами достигает 80 нм, что обес­печивает действие катехоламинов не только в области их выделения, но в результате попа­дания в кровяное русло — на значительном расстоянии посредством циркуляции в кро­ви. Кровеносные сосуды богато снабжены постсинаптическими а-адренорецепторами с преобладанием а,-, т.е. иннервированных ад-ренорецепторов. Плотность р-рецепторов не­высока.

Жирными стрелками обозначена более выраженная акти­вация рецепторов.

В. Вазодилатация (расширение кровенос­ных сосудов) осуществляется с помощью раз­личных механизмов.

  1. Расширение сосудов возникает вследст­ вие уменьшения тонуса симпатических сосу­ досуживающих нервных волокон. Наличие тонуса у симпатических сосудосуживателей обеспечивает двоякий эффект: увеличение их тонуса сопровождается сужением сосудов, уменьшение тонуса этих нервов ведет к рас­ ширению сосудов. Это главный нервный ме­ ханизм вазодилатации.
  2. Расширение капилляров может осу­ ществляться в результате закрытия артерио- венозных анастомозов; при этом увеличива­ ется напор крови в капиллярах, и они под давлением крови расширяются.
  3. Вазодилатапия осуществляется с помо­ щью симпатических холинергических нерв­ ных волокон. У собак и кошек симпатичес­ кие холинергические волокна расширяют прекапиллярные сосуды скелетных мышц. Эта сосудорасширяющая система берет нача­ ло от моторной зоны коры большого мозга. У человека такое расширение мышечных со­ судов предшествует физической нагрузке (еще при планировании движения) — опере­жающее обеспечение мышц питательными веществами и кислородом. Сигналы поступа­ют от коры большого мозга.
  1. Расширение сосудов, в основном кожи, наблюдается при раздражении периферичес­ ких отрезков задних корешков спинного мозга, механизм которого пока не ясен. Ме­ ханическое или химическое раздражение кожи также может сопровождаться местным расширением сосудов, что используется в клинической практике для оценки вегетатив­ ного статуса. Считают, что сосудистая реак­ ция осуществляется по механизму аксон- рефлекса.
  2. Расширение сосудов в некоторых орга­ нах может наблюдаться при возбуждении симпатической нервной системы и актива­ ции р-адренорецепторов, например, в мелких пиальных сосудах мозга, в мелких сосудах сердца (в скелетных мышцах — спорно). Это противоречие, по-видимому, объясняется тем, что в эксперименте слабые раздражения симпатического нерва ведут к активации в основном р-адренорецепторов, так как их возбудимость выше возбудимости а-рецепто- ров. При усилении раздражения возбуждают­ ся и а-рецепторы, что и ведет к сужению со­ судов, поскольку а-рецепторов в сосудах больше. С возрастом чувствительность $-ад- ренорецепторов к катсхоламинам снижается, что способствует развитию гипертензии. Ре­ лаксация сосудов связана скорее всего с р2-рецепторами. В крупных сосудах мозга р-адренорецепторы не обнаружены; имеются они в мелких пиальных сосудах и дополняют метаболическую вазодилатацию. В скелетных мышцах р-адренорецепторы локализуются в основном в микрососудах, причем очень чув­ ствительны к адреналину р-рецепторы прека- пиллярных сфинктеров и небольших резис- тивных сосудов диаметром меньше 30 мкм — пороговая концентрация адреналина здесь равна 10 нмоль/л. В коронарных сосудах, как и во всех органах, присутствуют а- и р-ре­ цепторы, но число последних становится преобладающим по мере удаления от прокси­ мальных отделов. Поэтому мелкие сосуды сердца при возбуждении симпатико-адрена- ловой системы расширяются, а более круп­ ные — сужаются, что может привести к ухуд­ шению кровоснабжения миокарда.

Расширение сосудов некоторых органов осуществляется с помощью парасимпатичес­ких (холинергических) волокон. Языкогло- точный нерв расширяет сосуды миндалин, околоушной железы, задней трети языка. Верхнегортанный нерв расширяет сосуды гортани и щитовидной железы. Язычный нерв расширяет сосуды языка. Сосудорасши­ряющие парасимпатические холинергические волокна имеются в составе тазового нерва. Они активируются при половом возбужде­нии, вызывают выраженное расширение со­судов половых органов и увеличение крово­тока в них. Холинергические сосудорасши­ряющие волокна иннервируют также мелкие артерии мягкой мозговой оболочки головно­го мозга. Есть данные, свидетельствующие о том, что активация волокон блуждающего нерва ведет к расширению коронарных сосу­дов. Вазодилатация органов брюшной полос­ти с помощью парасимпатических волокон блуждающего нерва не доказана.

78. Сосудодвигательный центр продолговатого мозга. Роль гипоталамуса и других структур лимбической системы мозга в нейрогенной регуляции сосудов.

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр — находится в продолго­ватом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перере­зать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт.ст. От­сюда следует, что сосудодвигательный центр локализован в продолго­ватом мозге и находится в состоянии тонической активности, т. е. дли­тельного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.

Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.

Считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегета­тивной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.

Гипоталамус, как и продолговатый мозг, содержит прессор­ные и депрессорные зоны, нейроны которых посылают аксоны к соответствующим центрам продолговатого мозга и регулируют их активность. На уровне гипоталамуса (промежуточный мозг) про­исходит интеграция соматических и вегетативных влияний нервной системы на организм - изменения соматической деятельности обес­печиваются соответствующими изменениями деятельности сердеч­но-сосудистой системы. Например, при физической нагрузке рабо­та сердца увеличивается, происходит перераспределение крови в организме за счет сужения одних сосудов (кожи, пищеваритель­ной системы) и расширения других (мышц, мозга, сердца), что ве­дет к увеличению кровотока в них, доставки кислорода, питатель­ных веществ и удалению продуктов обмена.

Влияние коры большого мозга на системное АД. Особенно сильное влияние на кровообращение оказывают моторная и премо-торная зоны. Кора большого мозга реализует свое влияние на сер­дечно-сосудистую систему в обеспечении приспособительных ре­акций организма с помощью вегетативной нервной системы (условных, безусловных рефлексов) и гормональных механизмов (см. раздел 10.10). Таким образом, кора большого мозга и проме­жуточный мозг оказывают модулирующее влияние на бульбарный отдел центра кровообращения, а при физической нагрузке и эмо­циональном возбуждении влияние вышележащих отделов ЦНС сильно возрастает - наблюдается значительная стимуляция дея­тельности сердечно-сосудистой системы.

79. Дистанционная гуморальная регуляция сосудов. Сосудосуживающие и сосудорасширяющие биологически активные вещества.

Гуморальная регуляция сосудов осуществляется химическими веществами, циркулирующими в крови или образующимися в тканях при раздражении. Эти вещества либо суживают сосуды (прессорное действие), либо расширяют (депрессорное действие).


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.048 с.