Электролитическая диссоциация веществ в водных                      растворах — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Электролитическая диссоциация веществ в водных                      растворах

2021-04-18 89
Электролитическая диссоциация веществ в водных                      растворах 0.00 из 5.00 0 оценок
Заказать работу

Химическая связь

Все взаимодействия, приводящие к объединению химических частиц (атомов, молекул, ионов и т. п.) в вещества делятся на химические связи и межмолекулярные связи (межмолекулярные взаимодействия).
Химические связи - связи непосредственно между атомами. Различают ионную, ковалентную и металлическую связь.

Межмолекулярные связи - связи между молекулами. Это водородная связь, ион-дипольная связь (за счет образования этой связи происходит, например, образование гидратной оболочки ионов), диполь-дипольная (за счет образования этой связи объединяются молекулы полярных веществ, например, в жидком ацетоне) и др.

Ионная связь - химическая связь, образованная за счет электростатического притяжения разноименно заряженных ионов. В бинарных соединениях (соединениях двух элементов) она образуется в случае, когда размеры связываемых атомов сильно отличаются друг от друга: одни атомы большие, другие маленькие - то есть одни атомы легко отдают электроны, а другие склонны их принимать (обычно это атомы элементов, образующих типичные металлы и атомы элементов, образующих типичные неметаллы); электроотрицательность таких атомов также сильно отличается. Ионная связь ненаправленная и не насыщаемая.
Ковалентная связь - химическая связь, возникающая за счет образования общей пары электронов. Ковалентная связь образуется между маленькими атомами с одинаковыми или близкими радиусами. Необходимое условие - наличие неспаренных электронов у обоих связываемых атомов (обменный механизм) или неподеленной пары у одного атома и свободной орбитали у другого (донорно-акцепторный механизм):

а) H· + ·H H:H H-H H2 (одна общая пара электронов; H одновалентен);
б) N N N2 (три общие пары электронов; N трехвалентен);
в) H-F HF (одна общая пара электронов; H и F одновалентны);
г) NH4+ (четыре общих пары электронов; N четырехвалентен)

По числу общих электронных пар ковалентные связи делятся на

  • простые (одинарные) - одна пара электронов,
  • двойные - две пары электронов,
  • тройные - три пары электронов.

Двойные и тройные связи называются кратными связями.

По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную. Неполярная связь образуется между одинаковыми атомами, полярная - между разными.

Электроотрицательность - мера способности атома в веществе притягивать к себе общие электронные пары.
Электронные пары полярных связей смещены в сторону более электроотрицательных элементов. Само смещение электронных пар называется поляризацией связи. Образующиеся при поляризации частичные (избыточные) заряды обозначаются + и -, например: .
По характеру перекрывания электронных облаков ("орбиталей") ковалентная связь делится на -связь и -связь.

Связь образуется за счет прямого перекрывания электронных облаков (вдоль прямой, соединяющей ядра атомов), -связь - за счет бокового перекрывания (по обе стороны от плоскости, в которой лежат ядра атомов).

Ковалентная связь обладает направленностью и насыщаемостью, а также поляризуемостью.
Для объяснения и прогнозирования взаимного направления ковалентных связей используют модель гибридизации.

Гибридизация атомных орбиталей и электронных облаков - предполагаемое выравнивание атомных орбиталей по энергии, а электронных облаков по форме при образовании атомом ковалентных связей.

Чаще всего встречается три типа гибридизации: sp -, sp 2 и sp 3-гибридизация. Например:
sp -гибридизация - в молекулах C2H2, BeH2, CO2 (линейное строение);

sp 2-гибридизация - в молекулах C2H4, C6H6, BF3 (плоская треугольная форма);

sp 3-гибридизация - в молекулах CCl4, SiH4, CH4 (тетраэдрическая форма); NH3(пирамидальная форма); H2O (уголковая форма).

Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества - интерметаллические соединения (AlCr2, Ca2Cu, Cu5Zn8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов.
Водородная связь - межмолекулярная связь, образованная за счет частичного акцептирования пары электронов высокоэлектроотрицательнного атома атомом водорода с большим положительным частичным зарядом. Образуется в тех случаях, когда в одной молекуле есть атом с неподеленной парой электронов и высокой электроотрицательностью (F, O, N), а в другой - атом водорода, связанный сильно полярной связью с одним из таких атомов. Примеры межмолекулярных водородных связей:

H—O—H ··· OH2, H—O—H ··· NH3, H—O—H ··· F—H, H—F ··· H—F.

Внутримолекулярные водородные связи существуют в молекулах полипептидов, нуклеиновых кислот, белков и др.

Мерой прочности любой связи является энергия связи.

Энергия связи - энергия необходимая для разрыва данной химической связи в 1 моле вещества. Единица измерений - 1 кДж/моль.

Энергии ионной и ковалентной связи - одного порядка, энергия водородной связи - на порядок меньше.

Энергия ковалентной связи зависит от размеров связываемых атомов (длины связи) и от кратности связи. Чем меньше атомы и больше кратность связи, тем больше ее энергия.

Энергия ионной связи зависит от размеров ионов и от их зарядов. Чем меньше ионы и больше их заряд, тем больше энергия связи.

 

 

                                   Строение вещества

По типу строения все вещества делятся на молекулярные и немолекулярные. Среди органических веществ преобладают молекулярные вещества, среди неорганических - немолекулярные.
По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).
Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: H2, O2, N2, Cl2, Br2, S8, P4 и другие простые вещества; CO2, SO2, N2O5, H2O, HCl, HF, NH3, CH4, C2H5OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Немолекулярные вещества с ковалентными связями или атомные вещества (алмаз, графит, Si, SiO2, SiC и другие) образуют очень прочные кристаллы (исключение - слоистый графит), они нерастворимы в воде и других растворителях, имеют высокие температуры плавления и кипения, большинство из них не проводит электрический ток (кроме графита, обладающего электропроводностью, и полупроводников - кремния, германия и пр.)

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде. Следует отметить, что в ионных веществах, кристаллы которых состоят из сложных ионов, есть и ковалентные связи, например: (Na+)2(SO42-), (K+)3(PO43-), (NH4+)(NO3-) и т. д. Ковалентными связями связаны атомы, из которых состоят сложные ионы.

Металлы (вещества с металлической связью) очень разнообразны по своим физическим свойствам. Среди них есть жидкость (Hg), очень мягкие (Na, K) и очень твердые металлы (W, Nb).
Характерными физическими свойствами металлов является их высокая электропроводность (в отличие от полупроводников, уменьшается с ростом температуры), высокая теплоемкость и пластичность (у чистых металлов).

В твердом состоянии почти все вещества состоят из кристаллов. По типу строения и типу химической связи кристаллы ("кристаллические решетки") делят на атомные (кристаллы немолекулярных веществ с ковалентной связью), ионные (кристаллы ионных веществ), молекулярные (кристаллы молекулярных веществ с ковалентной связью) и металлические (кристаллы веществ с металлической связью).

Расплавы

1) Активные металлы

1.Соль активного металла и бескислородной кислоты

NaCl ↔ Na+ + Cl

K"катод"(-): Na+ + 1e = Na0

A"анод"(+): Cl — 1e = Cl0; Cl0+Cl0=Cl2

Вывод: 2NaCl → (электролиз) 2Na + Cl2

2.Соль активного металла и кислородосодержащей кислоты

Na2SO4↔2Na++SO42−

K(-): 2Na+ +2e =2Na0

A(+): 2SO42− −4e =2SO3+O2

Вывод: 2Na2SO4 → (электролиз) 4Na + 2SO3 + O2

3. Гидроксид: активный металл и гидроксид-ион

NaOH ↔ Na+ + OH

K(-): Na+ +1e =Na0

A(+): 4OH −4e =2H2O + O2

Вывод: 4NaOH → (электролиз) 4Na + 2H2O + O2

2) Менее активные металлы

Точно так же

3) Неактивные металлы

Точно так же

Растворы

1) Активные металлы

1.Соль активного металла и бескислородной кислоты

NaCl ↔ Na+ + Cl

K"катод"(-): 2H2O + 2e = H2 + 2OH

A"анод"(+): Cl — 1e = Cl0; Cl0+Cl0=Cl2

Вывод: 2NaCl + 2H2O(электролиз) → H2 + Cl2 +2NaOH

2.Соль активного металла и кислородсодержащей кислоты

Na2SO4↔2Na++SO42−

K(-): 2H2O + 2e = H2 + 2OH

A(+): 2H2O — 4e = O2 + 4H+

Вывод: 2H2O (электролиз) → 2H2 + O2

 

3. Гидроксид: активный металл и гидроксид-ион

NaOH ↔ Na+ + OH

K(-): 2H2O + 2e = H2 + 2OH

A(+): 2H2O — 4e = O2 + 4Н+

Вывод: 2H2O (электролиз) → 2H2 + O2

2) Менее активные металлы

1.Соль менее активного металла и бескислородной кислоты

ZnCl2 ↔ Zn2+ + 2Cl

K"катод"(-): Zn2+ + 2e = Zn0

A"анод"(+): 2Cl — 2e = 2Cl0

Вывод: ZnCl2 (электролиз) → Zn + Cl2

2.Соль менее активного металла и кислородсодержащей кислоты

ZnSO4 ↔ Zn2++SO42−

K(-): Zn2+ + 2e = Zn0

A(+): 2H2O — 4e = O2 + 4Н+

Вывод: 2ZnSO4 + 2H2O(электролиз) → 2Zn + 2H2SO4 + O2

3. Гидроксид: невозможно (нерастворим)

3) Неактивные металлы

Точно так же

 

Для запоминания катодных и анодных процессов в электрохимии существует следующее мнемоническое правило:

§ У анода анионы окисляются.

§ На катоде катионы восстанавливаются.

В первой строке все слова начинаются с гласной буквы, во второй — с согласной.

Или проще:

§ КАТод — КАТионы (ионы у катода)

§ АНод — АНионы (ионы у анода)

Реакции в кислой среде.

 

5K2S+4O3 + 2KMn+7O4 + 3H2SO4 ® 6K2S+6O4 + 2Mn+2SO4 + 3H2O

 

электронный баланс

Mn+7 + 5ē ® Mn+2 2
S+4 – 2ē ® S+6 5

 

метод полуреакций

MnO4- + 8H+ + 5ē ® Mn2+ + 4H2O 2
SO32- + H2O – 2ē ® SO42- + 2H+ 5

–––––––––––––––––––––––––––––––––––––––––––––––––––

2MnO4- + 16H+ + 5SO32- + 5H2O ® 2Mn2+ + 8H2O + 5SO42- + 10H+

или 2MnO4- + 6H+ + 5SO32- ® 2Mn2+ + 3H2O + 5SO42-

 

Фиолетовый раствор KMnO4 обесцвечивается при добавлении раствора K2SO3.

Реакции в нейтральной среде

 

3K2S+4O3 + 2KMn+7O4 + H2O ® 3K2S+6O4 +2Mn+4O2¯ + 2KOH

 

электронный баланс

S+4 – 2ē ® S+6 3
Mn+7 + 3ē ® Mn+4 2

 

метод полуреакций:

MnO41- + 2H2O + 3ē ® MnO2 + 4OH- 2
SO32- + 2OH- - 2ē ® SO42- + H2O 3

–––––––––––––––––––––––––––––––––––––––––––––––––––

2MnO4- + 4H2O + 3SO32- + 6OH- ® 2MnO2 + 8OH- + 3SO42- + 3H2O

или 2MnO4- + H2O + 3SO32- ® 2MnO2 + 2OH- + 3SO42-

 

Фиолетовый раствор KMnO4 после окончания реакции обесцвечивается и наблюдается выпадение бурого осадка.

 

Реакции в щелочной среде.

 

K2S+4O3 + 2KMn+7O4 + 2KOH ® K2S+6O4 +2K2Mn+6O4 + H2O

 

электронный баланс

S+4 – 2ē ® S+6 1
Mn+7 + 1ē ® Mn+6 2

 

метод полуреакций:

SO32- + 2OH- - 2ē ® SO42- + H2O 1
MnO41- + ē ® MnO42- 2

–––––––––––––––––––––––––––––––––––––

SO32- + 2OH- + 2MnO4- ® SO42- + H2O + 2MnO42-

 

Фиолетовый раствор KMnO4 превращается в зеленоватый раствор K2MnO4.

Таким образом,

 

Реакции с дихроматом калия в качестве окислителя

Степень окисления хрома понижается с +6 до +3. Наблюдается изменение окраски реакционной массы с желто-оранжевого цвета до зеленого или фиолетового.

 

1) K2Cr2+6O7 + 3H2S-2 + 4H2SO4 ® K2SO4 + Cr2+3(SO4)3 + 3S0¯ + 7H2O

 

электронный баланс:

2Cr+6 + 6ē ® 2Cr+3 1
S-2 - 2ē ® S0 3

 

метод полуреакций:

Cr2O72- + 14H+ + 6ē ® 2Cr3+ + 7H2O

1

H2S0 - 2ē ® S0 + 2H+

3

––––––––––––––––––––––––––––––––––

Cr2O72- + 8H+ + 3H2S ® 2Cr3+ + 7H2O + 3S0

 

2) K2Cr2+6O7 + 6Fe+2SO4 + 7H2SO4 ® 3Fe2+3(SO4)3 + K2SO4 + Cr2+3(SO4)3 + 7H2O

 

электронный баланс:

2Cr+6 + 6ē ® 2Cr+3 1
Fe+2 – ē ® Fe+3 6

 

метод полуреакций:

Cr2O72- + 14H+ + 6ē ® 2Cr3+ + 7H2O

1

Fe2+ - ē ® Fe3+

6

–––––––––––––––––––––––––––––––––––––

6Fe2+ + Cr2O72- + 14H+ ® 2Cr3+ + 6Fe3+ + 7H2O

 

3) K2Cr2+6O7 + 14HCl-1 ® 3Cl20­ + 2KCl + 2Cr+3Cl3 + 7H2O

 

электронный баланс:

2Cr+6 + 6ē ® 2Cr+3 1
2Cl-1 – 2ē ® Cl20 3

 

метод полуреакций:

Cr2O72- + 14H+ + 6ē ® 2Cr3+ + 7H2O

1

2Cl1- - 2ē ® Cl20

3

–––––––––––––––––––––––––––––––––––

Cr2O72- + 6Cl- + 14H+ ® 2Cr3+ + 3Cl20 + 7H2O

 

 

                           Способы получения металлов                                            

                                 Природные соединения металлов

Металлы могут встречаться в природе или в виде простого вещества или в виде сложного вещества.

Металлы в природе встречаются в трёх формах:

1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)

2. Средней активности – в виде оксидов, сульфидов (Fe3O4, FeS2)

3. Благородные – в свободном виде (Au, Pt, Ag)

Чаще всего металлы в природе встречаются в виде солей неорганических кислот или оксидов:

 

  • хлоридов – сильвинит КСl • NaCl, каменная соль NaCl;
  • нитратов – чилийская селитра NaNO3;
  • сульфатов – глауберова соль Na2SO4 · 10 H2O, гипс CaSO4 • 2Н2О;
  • карбонатов – мел, мрамор, известняк СаСО3, магнезит MgCO3, доломит CaCO3 • MgCO3;
  • сульфидов – серный колчедан FeS2, киноварь HgS, цинковая обманка ZnS;
  • фосфатов – фосфориты, апатиты Ca 3(PO4)2;
  • оксидов – магнитный железняк Fe3O4, красный железняк Fe2O3, бурый железняк Fe2O3 • Н2О.

 

Ещё в середине II тысячелетия до н. э. в Египте было освоено получение железа из железных руд. Это положило начало железному веку в истории человечества, который пришёл на смену каменному и бронзовому векам. На территории нашей страны начало железного века относят к рубежу II и I тысячелетий до н. э.

Минералы и горные породы, содержащие металлы и их соединения и пригодные для промышленного получения металлов, называются рудами.

Отрасль промышленности, которая занимается получением металлов из руд, называется металлургией. Так же называется и наука о промышленных способах получения металлов из руд.

Металлургия – это наука о промышленных способах получения металлов.

Получение металлов

Большинство металлов встречаются в природе в составе соединений, в которых металлы находятся в положительной степени окисления, значит для того, чтобы их получить, в виде простого вещества, необходимо провести процесс восстановления.

Ме+n + ne- → Me0

Химическая связь

Все взаимодействия, приводящие к объединению химических частиц (атомов, молекул, ионов и т. п.) в вещества делятся на химические связи и межмолекулярные связи (межмолекулярные взаимодействия).
Химические связи - связи непосредственно между атомами. Различают ионную, ковалентную и металлическую связь.

Межмолекулярные связи - связи между молекулами. Это водородная связь, ион-дипольная связь (за счет образования этой связи происходит, например, образование гидратной оболочки ионов), диполь-дипольная (за счет образования этой связи объединяются молекулы полярных веществ, например, в жидком ацетоне) и др.

Ионная связь - химическая связь, образованная за счет электростатического притяжения разноименно заряженных ионов. В бинарных соединениях (соединениях двух элементов) она образуется в случае, когда размеры связываемых атомов сильно отличаются друг от друга: одни атомы большие, другие маленькие - то есть одни атомы легко отдают электроны, а другие склонны их принимать (обычно это атомы элементов, образующих типичные металлы и атомы элементов, образующих типичные неметаллы); электроотрицательность таких атомов также сильно отличается. Ионная связь ненаправленная и не насыщаемая.
Ковалентная связь - химическая связь, возникающая за счет образования общей пары электронов. Ковалентная связь образуется между маленькими атомами с одинаковыми или близкими радиусами. Необходимое условие - наличие неспаренных электронов у обоих связываемых атомов (обменный механизм) или неподеленной пары у одного атома и свободной орбитали у другого (донорно-акцепторный механизм):

а) H· + ·H H:H H-H H2 (одна общая пара электронов; H одновалентен);
б) N N N2 (три общие пары электронов; N трехвалентен);
в) H-F HF (одна общая пара электронов; H и F одновалентны);
г) NH4+ (четыре общих пары электронов; N четырехвалентен)

По числу общих электронных пар ковалентные связи делятся на

  • простые (одинарные) - одна пара электронов,
  • двойные - две пары электронов,
  • тройные - три пары электронов.

Двойные и тройные связи называются кратными связями.

По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную. Неполярная связь образуется между одинаковыми атомами, полярная - между разными.

Электроотрицательность - мера способности атома в веществе притягивать к себе общие электронные пары.
Электронные пары полярных связей смещены в сторону более электроотрицательных элементов. Само смещение электронных пар называется поляризацией связи. Образующиеся при поляризации частичные (избыточные) заряды обозначаются + и -, например: .
По характеру перекрывания электронных облаков ("орбиталей") ковалентная связь делится на -связь и -связь.

Связь образуется за счет прямого перекрывания электронных облаков (вдоль прямой, соединяющей ядра атомов), -связь - за счет бокового перекрывания (по обе стороны от плоскости, в которой лежат ядра атомов).

Ковалентная связь обладает направленностью и насыщаемостью, а также поляризуемостью.
Для объяснения и прогнозирования взаимного направления ковалентных связей используют модель гибридизации.

Гибридизация атомных орбиталей и электронных облаков - предполагаемое выравнивание атомных орбиталей по энергии, а электронных облаков по форме при образовании атомом ковалентных связей.

Чаще всего встречается три типа гибридизации: sp -, sp 2 и sp 3-гибридизация. Например:
sp -гибридизация - в молекулах C2H2, BeH2, CO2 (линейное строение);

sp 2-гибридизация - в молекулах C2H4, C6H6, BF3 (плоская треугольная форма);

sp 3-гибридизация - в молекулах CCl4, SiH4, CH4 (тетраэдрическая форма); NH3(пирамидальная форма); H2O (уголковая форма).

Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества - интерметаллические соединения (AlCr2, Ca2Cu, Cu5Zn8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов.
Водородная связь - межмолекулярная связь, образованная за счет частичного акцептирования пары электронов высокоэлектроотрицательнного атома атомом водорода с большим положительным частичным зарядом. Образуется в тех случаях, когда в одной молекуле есть атом с неподеленной парой электронов и высокой электроотрицательностью (F, O, N), а в другой - атом водорода, связанный сильно полярной связью с одним из таких атомов. Примеры межмолекулярных водородных связей:

H—O—H ··· OH2, H—O—H ··· NH3, H—O—H ··· F—H, H—F ··· H—F.

Внутримолекулярные водородные связи существуют в молекулах полипептидов, нуклеиновых кислот, белков и др.

Мерой прочности любой связи является энергия связи.

Энергия связи - энергия необходимая для разрыва данной химической связи в 1 моле вещества. Единица измерений - 1 кДж/моль.

Энергии ионной и ковалентной связи - одного порядка, энергия водородной связи - на порядок меньше.

Энергия ковалентной связи зависит от размеров связываемых атомов (длины связи) и от кратности связи. Чем меньше атомы и больше кратность связи, тем больше ее энергия.

Энергия ионной связи зависит от размеров ионов и от их зарядов. Чем меньше ионы и больше их заряд, тем больше энергия связи.

 

 

                                   Строение вещества

По типу строения все вещества делятся на молекулярные и немолекулярные. Среди органических веществ преобладают молекулярные вещества, среди неорганических - немолекулярные.
По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).
Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: H2, O2, N2, Cl2, Br2, S8, P4 и другие простые вещества; CO2, SO2, N2O5, H2O, HCl, HF, NH3, CH4, C2H5OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Немолекулярные вещества с ковалентными связями или атомные вещества (алмаз, графит, Si, SiO2, SiC и другие) образуют очень прочные кристаллы (исключение - слоистый графит), они нерастворимы в воде и других растворителях, имеют высокие температуры плавления и кипения, большинство из них не проводит электрический ток (кроме графита, обладающего электропроводностью, и полупроводников - кремния, германия и пр.)

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде. Следует отметить, что в ионных веществах, кристаллы которых состоят из сложных ионов, есть и ковалентные связи, например: (Na+)2(SO42-), (K+)3(PO43-), (NH4+)(NO3-) и т. д. Ковалентными связями связаны атомы, из которых состоят сложные ионы.

Металлы (вещества с металлической связью) очень разнообразны по своим физическим свойствам. Среди них есть жидкость (Hg), очень мягкие (Na, K) и очень твердые металлы (W, Nb).
Характерными физическими свойствами металлов является их высокая электропроводность (в отличие от полупроводников, уменьшается с ростом температуры), высокая теплоемкость и пластичность (у чистых металлов).

В твердом состоянии почти все вещества состоят из кристаллов. По типу строения и типу химической связи кристаллы ("кристаллические решетки") делят на атомные (кристаллы немолекулярных веществ с ковалентной связью), ионные (кристаллы ионных веществ), молекулярные (кристаллы молекулярных веществ с ковалентной связью) и металлические (кристаллы веществ с металлической связью).

Электролитическая диссоциация веществ в водных                      растворах

Растворы всех веществ можно разделить на две группы: проводят электрический ток или проводниками не являются.

С особенностями растворения веществ можно познакомиться экспериментально исследуя электропроводность растворов этих веществ с помощью прибора.

Для объяснения особенностей водных растворов электролитов шведским ученым С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание этой теории можно свести к следующим трем положениям:

1. Электролиты при растворении в воде или расплавлении распадаются (диссоциируют) на ионы

2. положительно (катионы) и отрицательно (анионы) заряженные частицы.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na +, Mg 2+, А l 3+ и т.д.) - или из нескольких атомов - это сложные ионы (N О3-, SO 2- 4, РОЗ-4 и т.д.).

2. В растворах и расплавах электролиты проводят электрический ток.

Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицатель­но заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами. Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

                                                                                   ВЕЩЕСТВА

ЭЛЕКТРОЛИТЫ НЕЭЛЕКТРОЛИТЫ
Электролиты – это вещества, водные растворы или расплавы которых проводят электрический ток Неэлектролиты – это вещества, водные растворы или расплавы которых не проводят электрический ток
Вещества с ионной химической связью или ковалентной сильнополярной химической связью – кислоты, соли, основания Вещества с ковалентной неполярной химической связью или ковалентной слабополярной химической связью
В растворах и расплавах образуются ионы В растворах и расплавах не образуются ионы

3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).

Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссоциации молекулы электролита К A на катион К+ и анион А- в общем виде записывается так: КА ↔ K+ + A-


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.