Литературный обзор. Механизм воздействия прокариотических микроорганизмов на спав и липазу — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Литературный обзор. Механизм воздействия прокариотических микроорганизмов на спав и липазу

2021-04-19 129
Литературный обзор. Механизм воздействия прокариотических микроорганизмов на спав и липазу 0.00 из 5.00 0 оценок
Заказать работу

Введение

 

В связи с производственной активностью увеличивается антропогенное воздействие на окружающую среду. Особо остро данный вопрос стоит в Байкальском регионе, вследствие этого требуется корреляция экономической деятельности предприятий с предполагаемым уровнем техногенного воздействия на окружающую среду. Снижение объемов и токсичности сточных вод достигается либо созданием современных методов очистки и утилизации, либо совершенствованием технологии. Наиболее оптимальным является последний способ, который позволяет при сохранении качественных параметров выпускаемой продукции значительно снизить уровень токсического загрязнения. Это можно достигнуть не только уменьшением расхода используемых ингредиентов в технологических процессах, но и замене высокотоксичных веществ на менее токсичные.

Основными загрязнителями на предприятиях меховой промышленности являются синтетические поверхностно-активные вещества (СПАВ). Данные ингредиенты широко применяются для удаления жировых веществ с поверхности волосяного покрова. Сточные воды, содержащие СПАВ, трудно поддаются биодеструкции и, попадая в водоемы вредно влияют на биоценоз и могут вызвать гибель высокоорганизованных организмов.

Решение данной проблемы возможно через внедрение экологически безопасных технологий, основанных на биотехнологических методах. Одним из способов, позволяющих сохранить качество мехового полуфабриката при снижении степени загрязнения сточных вод, является проведение совмещенного микробиологического и эмульсионного методов обезжиривания.

В связи с этим, целью данной работы являлось получение концентрированного ферментного препарата, изучение его свойств и проведение на его основе процесса обезжиривания меховой овчины.


Микробные липазы

 

В последние годы для получения различных ферментов находят широкое применение микроорганизмы, которые характеризуются ценнейшими свойствами, обеспечивающими им за короткий цикл развития на доступных питательных средах и в производственных условиях синтез ферментов, необходимых для народного хозяйства /40/.

При этом биосинтез многих гидролаз можно регулировать и осуществлять направленно путем подбора соответствующих условий культивирования, и прежде всего состава питательной среды. Более того, многие микробные ферменты образуются в ответ на действие индуктора, вносимого в питательную среду, причем активность индуцированного фермента в ответ на добавление специфического субстрата возрастает в процессе роста микроорганизма многократно, тогда как на среде без соответствующего индуктора фермент образуется в минимальных количествах /41/.

Особенность микроорганизмов заключается в том, что они способны синтезировать внеклеточные ферменты, активность которых во много раз превышает уровень активности внутриклеточных. Таким образом, при определенных условиях микробная клетка может осуществлять «сверхсинтез». Одним из промышленно важных ферментов, продуцируемых микроорганизмами, являются липазы, которые интенсивно исследуются во всем мире. Липаза – триглицеридгидролаза – фермент, катализирующий гидролиз жиров, широко распространена в природе. Она присутствует в животных и растительных клетках, а также в микроорганизмах. Экспериментальные исследования свидетельствуют о том, что микробные липазы являются ферментами с широкой специфичностью и большим разнообразием свойств. Свойства липаз и характер липолитической активности даже у одного рода можно различно варьировать. Изучение микробных липаз представляет большой теоретический и практический интерес, так как они могут быть использованы при гидролизе разнообразных жировых субстратов /42/.

 

Применение микробных липаз

Использование микробных липаз в первую очередь связано с потребностью масложировой промышленности. Они стали широко использоваться для модификации жиров и масел. Следует отметить, что безконтрольный липолиз может вызвать неприятный привкус, связанный с накоплением свободных жирных кислот, для удаления которых требуется дополнительное центрифугирование. С другой стороны, специфичный вкус сыра частично обусловлен присутствием короткоцепочечных жирных кислот, образующихся в результате частичного гидролиза молочного жира под действием липаз, продуцируемых микроорганизмами, и липаз, присутствующих в самом молоке. Пикантный и характерный вкус итальянских сыров обусловлен действием специально добавляемой в молоко липазы, специфичной к короткоцепочечным жирным кислотам. Липазы могут быть рекомендованы для модификации жиров, используемых в производстве хлебобулочных изделий. Использование модифицированных жиров улучшает вкус, цвет, мягкость и структуру хлеба. В кожевенной промышленности микробные липазы используются для обезжиривания кожи. Липазы микроорганизмов в комплексе с другими ферментами применяются для биологической очистки сточных вод /51/.

Существует еще ряд причин, которые делают изучение липаз интересным и перспективным. Прежде всего это касается их использования в медицине. Так, управление липолитической активностью, вероятно, будет играть важную роль в будущих методах лечения нарушений жирового обмена, и, следовательно, в контроле за сердечно-сосудистыми заболеваниями. Определение активности сывороточной липазы широко используется в клинике для диагностики некоторых заболеваний. Врожденная гиперлипемия может возникнуть из-за дефицита липопротеидлипазы, а нарушения процессов депонирования жиров связывают с холестерол-эстеразой и сфингомиелиназой. В еще большей мере обнадеживает и способствует появлению новых гипотез тот факт, что эфиры холестерина с жирными кислотами являются основными компонентами атеросклеротических бляшек и что миелинизация развивающегося мозга коррелирует с уменьшением содержания эфиров холестерина /52/.

В последнее время проводятся целенаправленные исследования по использованию микробных липаз в составе моющих средств, шампуней, кремов и профилактических зубных паст. Важность применения липаз в составе моющих средств определяется не только их высокой эффективностью, но и связана с охраной окружающей среды. Известно, что фосфаты, используемые в качестве синтетических моющих средств, приводят к загрязенению сточных вод. Другим немаловажным фактором является то, что использование ферментов в составе синтетических моющих средств позволяет проводить стирку при более низких температурах, следовательно, приводит к экономии энергозатрат /40/.

За рубежом липазу используют для придания приятного запаха молочным продуктам. Для создания букета запаха в молочных продуктах используют липазы, специфичные к короткоцепочечным жирным кислотам. Для этих целей давно используют ферменты из поджелудочной железы различных животных. Широкое применение липаз в различных областях привело к увеличению числа компаний, производящих микробные липазы /41/.

Таким образом, спектр применения микробных липаз достаточно широк. Эффективность использования их зависит отряда факторов, прежде всего от специфичности липаз и условий проведения конкретного биотехнологического процесса.

Таким образом, на основании литературного обзора можно сделать вывод, что представители рода Pseudomonas широко распространены в природе. Они могут развиваться в самых различных условиях в природе, используя самые разные соединения углерода и азота в энергетическом и конструктивном обмене. Псевдомонады способны расщеплять СПАВ. ПАВ способны взаимодействовать с различными компонентами клеточных стенок бактерий, включая муреиновый слой, белки, липиды, липопротеины, липополисахариды.

Внеклеточные щелочные протеиназы выполняют ряд важных катаболических функций вне клетки. Наиболее очевидной функцией щелочных протеиназ является расщепление белков и других высокомолекулярных субстратов, содержащихся в питательной среде, и превращение их в форму, способную легко проникать внутрь микробной клетки. Наиболее активными культурами в отношении образования щелочных протеиназ являются различные виды из рода Bacillus, главным образом Bac. Subtilis.

Микроорганизмы обладают особенностью, которая заключается в том, что они способны синтезировать внеклеточные ферменты. Одним из промышленно важных ферментов, продуцируемых микроорганизммами, являются липазы. Изучение микробных липаз представляет большой теоретический и практический интерес, так как они могут использоваться в различных отраслях промышленности (масло-жировой, кондитерской, кожевенно-меховой, в медицине и др.)


Объекты исследования

ПРЕВОЦЕЛЛ W-OF-7 представляет собой продукт оксиэтилирования технических жирных спиртов. По внешнему виду Превоцелл воскообразная масса белого цвета, растворяется при температуре 40–450С, устойчив в жесткой воде, а также в кислых и щелочных растворах. Обладает хорошей смачивающей способностью.

WETTER HAC – 100% активный, неионогенный смачивающий и отмачивающий агент, усиленный специальными бактерицидами и фунгицидами. На вид светло-янтарная, немного вязкая жидкость, растворимость неограниченная, рН – (вода) 6,8–7,2 (1% раствор). Применяется в отмоке вместе с обычным количеством соли, концентрация 1 г/л. Преимущества: предохраняет шерсть от вытекания и кожу от повреждения различными бактериями; обладает прекрасными моющими качествами, облегчая вымещение избыточных природных жиров, засохшей крови и чужеродных материалов как с волоса, так и с кожевой ткани.

DE-SOL-A – низкорастворимое моющее средство, на вид представляет собой белую пасту с рН 8–8,5 (1% раствор), растворимость – 10% дисперсионна. Применяется для мойки и обезжиривания меховой и шубной овчины (1,5 г/л DE-SOL-A, 1 г/л кальцинированной соды). Преимущества: гарантирует для шкурки: менее 1% жира в волосе и минимум натуральных жиров в кожевой ткани; позволяет чистое мездрение и более равномерное поглощение в пикеле и дублении; снижает возможность сваливания меха; выпускает шкурки белее, чище и оставляет волос рассыпчатым и открытым; улучшает равномерность окраски меха и кожи, вымещая из кожевой ткани натуральные жиры перед пикелем; стабилен в широком диапазоне рН, а также эффективен перед крашением для выравнивания цвета.

ГАММА представляет собой смесь высококачественных анионных, неионогенных ПАВ, полезных добавок. Препарат обладает высокой обезжиривающей способностью по отношению к натуральным жирам. Рекомендуется для обезжиривания кож КРС. Эффективен в жесткой воде, а также в присутствии электролитов и дубителей. Легко растворим в воде, в том числе и жесткой.

АГАР-АГАР представляет собой порошок белого цвета без постороннего запаха, вкуса. Наличие плесени и видимых посторонних включений не допускается. Физические и химические показатели должны соответствовать требованиям, указанным в табл 1.

 

Таблица 1. Физические и химические показатели агар-агара

Наименование показателей Норма
Цвет студня с массовой долей сухого агара 0,85%, %, не менее 45–60
Прочность студня с массовой долей сухого агара 0,85% г, не менее 200–300
Температура плавления студня с массовой долей сухого агара 0,85%, 0С, не ниже 80
Массовая доля влаги, %, не более 18
Массовая доля золы (в пересчете на сухое вещество), %, не более 4,5
Массовая доля общего азота (в пересчете на сухое вещество), %, не более 0,2
Наличие йода и тяжелых металлов Не допускается

 

Методы исследования

Мясопептонный агар (МПА)

При культивировании микроорганизмов большое значение имеет обеспечение их соответствующим питанием. Белковой основой для всех сред является питательный бульон. Основой для приготовления мясопептонного бульона (МПБ) является мясная вода. Ее приготавливают следующим образом: 15 г. сухого бульона растворяли в 1 дм3 дистиллированной воды и кипятили 1–3 мин. Для приготовления плотной питательной среды МПА к 1 дм3 МПБ добавляют 2–2,5% агар-агара от объема среды и расплавляют в автоклаве.

Синтетическая среда

К 1 дм3 дистиллированной воды для удовлетворения потребности микроорганизмов в макро- и микроэлементах, без которых клетка расти не может, в синтетическую среду вводили соли следующего состава (г/дм3): NaH2PO4-1,0; NH4NO3-1,0; KCl – 0,5; MgCl2-0,1. В качестве источника углерода в конструктивном и энергетическом обмене использовали шерстный жир в количестве 1 г/дм3. Также добавляли СПАВ – 1 г/дм3 и агар-агар в количестве 2–2,5% от объема жидкой среды и автоклавировали.

 

Выделение чистой культуры

Приготовление разведений. Разведения делают в стерильной водопроводной воде. Готовят определенный объем этого раствора и стерилизуют при 1 атм в автоклаве. В ходе одного опыта пользуются постоянным коэффициентом разведения, т. к. в этом случае уменьшается вероятность ошибки. Чаще всего делают десятичные разведения. Для этого берут пробирку с 10 см3 стерильного раствора и переносят стерильной пипеткой 1 см3 исследуемого материала в данную пробирку. Суспензию этого разведения тщательно перемешивают с помощью новой стерильной пипетки, вбирая в пипетку и выпуская из нее полученную смесь несколько раз. Это обеспечивает перемешивание суспензии и уменьшает адсорбцию клеток на стенках пипетки. Затем этой же пипеткой берут 1 мл полученного разведения и переносят его во 2-ую пробирку. Таким образом, готовят и последующие разведения. Степень разведения определяется предполагаемым количеством микроорганизмов в образце и соответственно число разведений тем больше, чем больше микроорганизмов в исходном субстрате.

Для приготовления каждого разведения обязательно используют отдельную пипетку. Пренебрежение этим правилом может привести к получению ошибочного результата. Ошибка связана с адсорбцией микроорганизмов на стенках пипетки, в результате чего не все клетки удаляются из пипетки при приготовлении соответствующего разведения. Часть клеток, оставшаяся на стенках пипетки, может затем попасть в одно из последующих разведений, что и явится причиной получения завышенного результата.

Посев на агаризованные среды в чашки Петри. В стерильные чашки Петри наливают расплавленную на кипящей водяной бане агаризованную среду, по 20–30 см3 в каждую. Чашки оставляют на горизонтальной поверхности, пока не остынет агар. Для посева отбирают чашки, среда в которых осталась стерильной. Когда используют элективные среды или выделяют и учитывают микроорганизмы, требующие повышенной влажности, посев проводят сразу же или вскоре после застывания агара.

Посев делают из определенных разведений в зависимости от предполагаемого количества микроорганизмов в исследуемом субстрате. Стерильной пипеткой наносят определенный объем (обычно 0,05; 0,1 или 0,2 мл) соответствующего разведения, предварительно тщательно перемешанного, на поверхность агаровой пластинки в чашки Петри. Этот объем распределяют по поверхности среды стерильным шпателем. Затем этим же шпателем проводят по всей поверхности во второй чашке, куда посевной материал не вносили. При выявлении микроорганизмов, количество которых в субстрате относительно не велико, посевной материал распределяют по поверхности среды только в одной чашке.

Из каждого исследуемого разведения делают таким образом 2–3 параллельных высева. Для параллельных высевов из одного разведения можно пользоваться одной пипеткой и одним шпателем. Для посевов из разных разведений используют другую стерильную пипетку и другой шпатель. Чашки с засеянными средами помещают в термостат, отрегулированный на определенную температуру, благоприятную для развития выявляемых микроорганизмов.

Подсчет выросших колоний проводят через определенное время после посева, которое зависит от скорости роста выявляемых микроорганизмов на используемой в опыте среде и данной температуре.

Подсчитывают количество колоний, выросших при высеве из определенного разведения на двух (одной) чашки Петри. Результаты параллельных высевов суммируют и определяют среднее число колоний, выросших при высеве из этого разведения. Колонии считают, как правило, не открывая чашки. Для удобства отмечают просчитанную колонию точкой на наружной стороне дна чашки, пользуясь стеклографом или чернилами по стеклу. При большом количестве колоний дно чашки делят на секторы, подсчитывают количество колоний в каждом секторе и результаты суммируют или используют полуавтоматические счетчики.

 

Метод раздавленной капли

Применяется при исследовании морфологии и подвижности микроорганизмов.

Каплю микробной суспензии помещают на поверхность чистого обезжиренного предметного стекла. При работе с культурой, выросшей на твердой среде, на предметное стекло наносят каплю водопроводной воды, затем стерильной пипеткой берут небольшое количество культуры и перемешивают ее в капле. Покрывное стекло помещают ребром на предметное и осторожно помещают его на суспензию, следя за тем, чтобы между стеклами не было пузырьков воздуха. Избыток жидкости удаляют полоской фильтровальной бумаги.

 

Определение мутности

Мутность определяют фотометрическим способом на приборе КФК-2-УХЛ-4.2 при D2540 и толщине поглощаемого слоя 30 мм. Стандартным раствором является дистиллированная вода.

 

Высаливание фермента

В колбу отбирают 50 см3 бактериальной суспензии, добавляют 30% от ее массы сульфата аммония, перемешивают. Раствор и образующийся осадок переносят в патроны и устанавливают в центрифугу марки ЦЛН-2. Продолжительность вращения 15 мин со скоростью 5000 об/мин. После чего образовавшийся осадок собирают в бюкс.

 

Биуретовый метод по Ярош

Метод используется для определения раствора белков с концентрацией от 0,04 до 1,6 мг/см3.

В пробирку наливают 2,4 см3 раствора мочевины, 0,1 см3 раствора белка и 2,5 см3 биуретового реактива. Смесь хорошо перемешивают и пробирки помещают в водяную баню или в термостат при 400С на 10 мин. Затем их охлаждают до 200С. Через 30 мин после добавления биуретового реактива раствор колометрируют при длине волны 540 нм. Количество белка находят по калибровочной кривой, составленной по яичному альбумину (рис. 1).

Для построения калибровочной кривой готовят исходные водные растворы с содержанием 15,20,25,30,35,40 и т.д. мг белка в 10 см3. Из полученных растворов отбирают в пробирки по 0,1 см3, добавляют 2,4 см3 раствора мочевины и 2,5 см3 биуретового раствора и ведут определений описанным выше методом.

 


2.2.10 Определение активности липазы (модифицированный метод Ота, Ямада)

За единицу ферментативной активности липазы принимают такое количество фермента, которое освобождает 1 мкмоль олеиновой кислоты из 40%-ной эмульсии оливкового масла при рН 7,0 и t=37°С в течение 1 ч.

Метод основан на определении путем титрования щелочью жирных кислот, образовавшихся под действием липазы при использовании в качестве субстрата оливковое масло.

Для проведения этого анализа необходимы следующие реактивы: раствор оливкового масла (субстрат), 2%-ный раствор поливинилового спирта, 1н раствор соляной кислоты, 0,05н раствор щелочи, фосфатно-цитратный буфер с рН 7,0, 1%-ный раствор фенолфталеина, 90%-ный раствор спирта, 1%-ный раствор фермента.

Приготовление субстрата. 100 см3 оливкового масла смешивают со 150 см3 2%-ного раствора поливинилового спирта в эмульсаторе. Полученную эмульсию выдерживают на льду в течение 60 мин. Если расслаивания не наблюдается, субстрат пригоден к использованию.

Приготовление раствора поливинилового спирта. 20г спирта помещают в мерную колбу на 1 дм3 и добавляют 800 см3 дистиллированной воды. Суспензию выдерживают в течение 30 мин при комнатной температуре, затем добавляют 0,5 см3 1н раствора соляной кислоты и непрерывно перемешивают при температуре 80–90°С в течение 1 ч. Затем раствор охлаждают, доводят до рН 7,0 раствором щелочи, объем доводят до 1 дм3 дистиллированной водой и полученный раствор фильтруют.

5 см3 эмульсии – субстрата и 4 см3 буфера с рН 7,0 помещают в колбу на 100 см3, которую закрывают пробкой. Смесь выдерживают на водяной бане при температуре 37°С в течение 10 мин. Затем к смеси добавляют 1 см3 раствора фермента и хорошо перемешивают. Полученную смесь выдерживают при температуре 37°С в течение 60 мин, после чего немедленно добавляют 30 см3 этанола для прекращения реакции. Раствор титруют 0,05н раствором щелочи в присутствии 1%-ного раствора фенолфталеина до появления окраски.

Контрольную пробу готовят следующим образом. К смеси субстрата и буфера с рН 7,0, выдержанной при температуре 37°С добавляют 30 см3 этанола, затем 1 см3 ферментного раствора и смесь немедленно титруют.

Разность между результатами титрования контрольной и опытной проб соответствует количеству 0,05н раствора щелочи, которое пошло на нейтрализацию жирных кислот, образовавшихся из оливкового масла под действием фермента.

Липазную активность фермента ЛС (в ед/г) определяют по формуле (1):

 

А ´Т

ЛС =– ´ 50, (1)

В

 

где ЛС – липазная активность фермента, ед/г;

А – разность между результатами титрования опытной и контрольной проб, см3;

Т – титр щелочи;

В-концентрация образца ферментного раствора, г/см3.

 

Определение содержания СПАВ

Для определения содержания в сточной воде анионактивных СПАВ применяют фотометрический метод, основанный на том, что эти СПАВ образуют с метиленовым голубым комплексные ассоциаты, растворяющиеся в хлороформе с образованием синих растворов. Сам метиленовый голубой в хлороформе не растворяется.

Приготовление рабочего раствора: 10 см3 стандартного раствора разбавляют дистиллированной водой до 1 дм3.

Построение калибровочного графика: в ряд делительных воронок, содержащих 100 см3 дистиллированной воды, помещают 0; 0,5; 1,0; 2,0;…; 16,0; 20,0 см3 рабочего раствора. В каждую воронку добавляют по 10 см3 буферного раствора, перемешивают и приливают по 5 см3 нейтрального раствора метиленового голубого и по 15 см3 хлороформа, снова перемешивают в течение 2 минут.

Во второй ряд делительных воронок наливают 100 см3 дистиллированной воды и по 5 см3 кислого раствора метиленового голубого. В эти же воронки спускают отстоявшийся хлороформный слой из первого ряда воронок. В первые воронки наливают еще по 5 см3 хлороформа, взбалтывают в течении 2 минут и после отстаивания сливают хлороформные вытяжки во второй ряд делительных воронок. Эту операцию повторяют еще раз. Если хлороформ не окрашивается, значит извлечение комплекса окончено.

Содержимое второго ряда воронок взбалтывают в течении 2 минут и после расслоения спускают хлороформный слой в мерные колбы вместимостью 50 см3 через воронки с кусочками ваты для отделения возможно образовавшейся мути. В делительные воронки наливают еще по 5 см3 хлороформа, взбалтывают 2 минуты и после расслоения спускют хлороформ в мерные колбы. Эту операцию повторяют еще раз. Объем экстракта в мерных колбах доводят до метки хлороформом, перемешивают и определяют оптическую плотность окрашенных растворов на фотоколориметре с красным светофильтром (l=650 нм) в кюветах с толщиной поглощающего слоя 20 мм.

При определении содержания анионактивного СПАВ в сточной воде 100 см3 хорошо перемешанной сточной воды помещают в делительную воронку. Если объем пробы меньше 100 см3 его доводят до 100 см3 дистиллированной водой. В делительную воронку вливают 10 см3 фосфатно-буферного раствора, 5 см3 нейтрального раствора метиленового голубого, 15 см3 хлороформа и далее все операции проводят, указанные при построении калибровочного графика.

Параллельно проводят холостой опыт со 100 см3 дистиллированной воды.

Если оптическая плотность превышает максимальное значение калибровочного графика, то отбирают аликвотную часть хлороформного экстракта и разбавляют хлороформом. Таким же образом разбавляют и раствор холостого опыта.

Калибровочный график представлен на рис. 2.

Содержание анионактивных СПАВ определяют по формуле (4):

 

С´1000

Х= –, (4)

V

 

где Х-содержание аниононактивных СПАВ, мг/см3;

С-содержание СПАВ, найденное по калибровочному графику, мг;

V – объем сточной воды, взятый для анализа, см3;

1000-перевод в дм3.

Неионогенный СПАВ реагирует с роданокобальтом аммония, образуя комплексные вещества синей окраски, растворимые в хлороформе, роданокобальтата аммония в хлороформе нерастворим. Чувствительность реакции невелика, но поскольку определяемые вещества нелетучи, возможно предварительное концентрарование путем выпаривания анализируемой воды досуха и растворением остатка в спирте и воде.

Приготовление стандартного раствора: 1 г применяемого неионогенного СПАВ растворяют в дистиллированной воде и доводят объем до 500 см3.

Построение калибровочного графика: отбирают 0; 0,5; 1; 2; 3; 4 и 5 cм3 стандартного раствора, доводят объем до 5 см3 и переносят в ряд делительных воронок вместимостью 50 см3, в которые предварительно налито по 20 см3 раствора роданокобальтата аммония. Содержимое воронки взбалтывают 1 минуту и дают постоять 5 минут. Затем прибавляют 4 см3 хлороформа, взбалтывают 1 минут и оставляют до расслаивания жидкости. Слой хлороформа сливают через воронку, в которую предварительно вкладывают кусочек ваты, пропитанный хлороформом, в калибровочную пробирку вместимостью 10 см3. Извлечение окрашенного комплекса повторяют дважды, используя порции хлороформа объемом 4 и 2 см3 и, собирая хлороформные экстракты в ту же пробирку. Пробирку опускают на 5 минут в водяную баню при температуре 200С и, если надо, доливают хлороформ до метки и перемешивают.

Оптические плотности полученных хлороформных экстрактов определяют на фотоколориметре с оранжевым светофильтром (l=610 нм) в кюветах с толщиной поглощающего слоя 30 мм. По полученным данным строят калибровочный график зависимости оптической плотности от содержания неионогенного СПАВ.

Калибровочный график представлен на рис. 3.

Содержание неионогенного СПАВ определяют по формуле (5):

 


С´1000

Х= –, (5)

V

 

где Х-содержание неиногенного СПАВ, мг/дм3;

С-содержание неионогенного вещества, найденное по калибровочному графику, мг;

V – объем сточной воды, взятый для анализа (с учетом разбавления или упаривания), см3;

1000-перевод в дм3.

 

Определение рН жидкости

Для измерения рН жидкости используется цифровой ионометр И-120.2. Входное напряжение прибора 220 В, частота 50 Гц. Ионометр предназначен для измерения рН жидкой фазы, температуры, С, градиента, %.

Измерение рН проводили следующим образом: химический стакан на 50 мл наливали 35 мл жидкости исследуемого раствора, погружали электроды, снимали показания. После этого промывали дистиллированной водой и протирали фильтровальной бумагой.

 

Экспериментальная часть

 

Одной из важных проблем мехового производства является снижение загрязнения сточных вод синтетическими поверхностно-активными веществами. Поступая в нативные водные объекты, СПАВ изменяют кислородный режим вод, вызывая гибель организмов. Решение этой проблемы особенно актуально в Байкальском регионе.

В настоящее время наиболее перспективным является использование биотехнологических методов, основанных на применении микроорганизмов с заданными свойствами, что позволяет уменьшить уровень техногенного воздействия на окружающую среду.

Высокая степень загрязнения сточных вод после процесса обезжиривания меховой овчины объясняется высокой начальной концентрацией СПАВ – 8 г/дм3 и формальдегида, являющегося токсичным и для человека, и для гидробионтов.

Одним из способов, позволяющих снизить уровень токсического загрязнения сточных вод, является совершенствование технологического процесса путем разработки новых обезжиривающих составов, позволяющих решить данную проблему при сохранении качества готовой продукции.

В связи с этим целью данной работы являлась разработка условий проведения совмещенного эмульсионного и микробиологического обезжиривания, основанного на применении концентрированного ферментного препарата, продуцируемого культурами рода Listeria. Исследуемые культуры были выделены из сточных вод после эмульсионного обезжиривания меховой овчины. Для получения ферментного препарата проведена его адаптация на синтетических средах, где в качестве единственного источника углерода были использованы синтетические поверхностно-активные вещества. В синтетическую среду вводили СПАВ различной химической природы: анионактивные – Гамма, De-sol-A, неионогенные – Превоцелл W-OF-7, Wetter HAC.

 

Экономическая часть

 

Одной из экологических проблем мехового производства является снижение загрязнения сточных вод синтетическими поверхностно-активными веществами (СПАВ), которые применяются при выполнении обезжиривания. Наиболее перспективным является совершенствование технологических процессов на основе биотехнологических методов, позволяющих уменьшить расход химических материалов, используемых в производстве, что ведет к снижению уровня техногенного воздействия на окружающую среду.

Одним из способов, позволяющих сохранить качество обезжиривания мехового полуфабриката при снижении степени загрязнения сточных вод, является проведение совмещенного эмульсионного и микробиологических методов обезжиривания. Применение предложенного метода обезжиривания меховой овчины позволит уменьшить расход СПАВ с 8 до 0,5 г/дм3, исключить введение в обезжиривающую ванну карбоната натрия и формальдегида. Все это позволит сократить расходы на выполнение технологического процесса, а также уменьшить плату за сброс сточных вод в городские канализационные сети.

 

Требования к микробиологическим лабораториям

 

Микробиологическая лаборатория предназначена для подготовки и проведения различных микробиологических исследований. Помещения лаборатории должны быть изолированы от других объектов. В ее состав входят: комната для микробиологических исследований (бокс); автоклавная (стерилизационная); моечная, оборудованная для мытья посуды; препараторская, где проводят подготовку лабораторной посуды и хранят питательные среды; материальная комната – для хранения запасов реактивов, посуды, аппаратуры, приборов, хозяйственного инвентаря.

Для проведения посевов, стерильной разливки сред и других работ с соблюдением правил асептики в помещении для исследований устраивают застекленный бокс шлюзом, общей площадью до 5 квадратных метров.

Организация и оборудование микробиологических лабораторий в учебных заведениях должны соответствовать производственным.

Рабочий стол должен быть всегда чистым, а используемые для работы предметы – аккуратно разложены.

При работе как в производственных, так и в учебных лабораториях необходимо учитывать то, что объектом исследования являются микроорганизмы, которые при неумелом обращении с ними могут вызывать болезни у человека. В связи с этим материалы и культуры микроорганизмов, используемые для учебных занятий, должны рассматриваться как потенциально опасные. Поэтому работающие в лабораториях сотрудники и студенты обязаны знать и соблюдать правила, обеспечивающие предотвращение обсеменения объектов внешней среды микроорганизмами и личную безопасность работающего.

Работать в лаборатории разрешается только в специальной одежде – халате, шапочке или косынке. Причем халат должен быть застегнут на все пуговицы, а волосы убраны под головной убор. Выходить за пределы лаборатории в спецодежде, выносить из лаборатории пробирки с культурами, препараты (мазки) и другие предметы категорически запрещается.

В лаборатории запрещается курить, принимать пищу и воду (в том числе и конфеты).

Культуры микроорганизмов, стерильную воду, питательные среды в пробирках, а также бактериологические петли нельзя класть на стол – их необходимо ставить в штативы. Использованные пипетки, предметные и покрывные стекла, шпатели, ватные тампоны и прочее помещают в сосуды с дезинфицирующей жидкостью (1%-ный раствор хлорамина и др.). Пинцеты и бактериологические петли, препаровальные иглы и другие мелкие металлические предметы после соприкосновения с культурой стерилизуют путем прокаливания в пламени горелки и только после этого помещают в штатив или банку. Категорически запрещается оставлять указанные предметы не стерилизованными.

Отработанные культуры микроорганизмов, а также другие загрязненные материалы и предметы по указанию лаборанта складывают в специальные бюксы и затем стерилизуют в автоклавах.

В случаях когда культура микроорганизмов попадает на стол и другие предметы, необходимо при помощи ватного тампона, смоченного дезраствором, собрать ее, а загрязненное место тщательно обеззаразить дезинфицирующим раствором. При попадании загрязненного культурой материала на кожу, конъюктиву или в рот принимают экстренные меры к обеззараживанию.

Перед уходом из лаборатории снимают халаты, руки обрабатывают дезинфицирующим раствором и тщательно их моют /55/.

 

5.3 Правилах хранения химических веществ

 

Хранение химических веществ является важным этапом обеспечения безопасности работы. Химические лаборатории меховых предприятий, как правило, потребляют небольшое количество токсичных взрыво- и пожароопасных веществ, поэтому там не требуется организация многочисленных дифференцированных хранилищ веществ каждой группы (всего их восемь). Однако это не должно приводить к тому, чтобы взрыво-, пожароопасные и токсичные вещества хранились где и как угодно. Администрация должна обеспечить сохранность документации, так как часто в процессе работы возникает необходимость выяснить характеристику поступивших в лабораторию химических веществ. Следует помнить, что химические вещества могут храниться в лаборатории только в объёме дневной потребности.

При планировке помещения склада необходимо учитывать специфику хранения ряда химических веществ. Легковоспламеняющиеся, взрывчатые вещества (металлический натрий, кальций и др.), а также сильные окислители (пероксиды водорода, натрия, концентрированные кислоты и др.) необходимо хранить в ограниченных количествах в защитных от влаги, пыли и света местах. Химические вещества нельзя хранить в таре без надписи. Необходимо постоянно следить за тем, чтоб надписи были легкочитаемыми, периодически их восстанавливая. Химическое вещество в таре без надписи подлежит уничтожению или анализу (с большой осторожностью!).

На химических складах должны быть технические весы (для взвешивания веществ с точностью до 0,1г) и аналитические (для взвешивания токсичных веществ с точностью до 0,001г). Необходимо также иметь комплект расфасовочного инвентаря (шпатели, ложечки, лопаточки, совки, цилиндры и пр.). В целях сохранения частоты химических реактивов и безопасности работы целесообразно закрепить за определённым веществом свой комплект. После расфасовки использованный инвентарь следует сразу же помыть или почистить.

Тару для хранения кислот во избежание разрыва при тепловом расширении надо заполнять не более, чем на 0,9 объёма. Стеклянные бутыли должны храниться в корзине и иметь плотную обрешётку. Очень опасно совместное хранение азотной, серной, хлорной кислот <


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.11 с.