В которой мы узнаем, как загадочные свойства света стали причиной целых двух научных революций в начале ХХ века — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

В которой мы узнаем, как загадочные свойства света стали причиной целых двух научных революций в начале ХХ века

2021-01-31 92
В которой мы узнаем, как загадочные свойства света стали причиной целых двух научных революций в начале ХХ века 0.00 из 5.00 0 оценок
Заказать работу

 

Мы создания света, этого таинственного и странного явления, которое и сегодня остается загадкой для многих из нас.

Свет, который мы получаем от Солнца, представляет собой совокупность множества электромагнитных волн, каждая из которых имеет свою длину. Небольшая видимая часть этого множества, спектр от красного до фиолетового цвета, состоит из волн длиной от 400 до 650 миллиардных долей метра (нанометров). Длина волны – это расстояние между двумя ее последовательно идущими гребнями. Соответственно, когда мы говорим о коротких волнах, мы имеем в виду, что их гребни расположены плотно. В длинных же волнах дистанция между двумя гребнями больше.

По сути, все мы продукты эволюции, происходившей на нашей планете в течение четырех миллиардов лет под ярким солнечным светом. Солнце, поверхность которого имеет температуру около 5500 градусов Цельсия, в соответствии с неформальной классификацией звезд считается желтым карликом и испускает большую часть света в желто‑зеленом спектре. На самом деле поверхность Солнца белая, а желтоватый цвет, который мы видим с Земли, объясняется рассеиванием синих частот при прохождении солнечного света через атмосферу. В дневные часы Солнце кажется нам очень ярким, потому что свет отражается от молекул азота и кислорода в воздухе. Этим же объясняется и голубой цвет неба: воздух гораздо эффективнее рассеивает короткие волны, чем длинные, а синий имеет меньшую длину волны, чем красный или желтый. Если посмотреть на небо в сторону от Солнца, мы увидим ту часть солнечного света, которая рассеивается лучше всего, то есть синий и немного белого цвета.[109] Учитывая, что размеры молекул воздуха в тысячи раз меньше стандартной длины волны, можно понять, почему синий цвет рассеивается лучше всего. Желтый и красный цвета с большой длиной волны прокатываются по воздуху, как волны по каменистому берегу, не замечая мелких преград на своем пути. На закате солнечный свет падает на Землю по касательной, и ему требуется больше времени на прохождение через атмосферу. Поэтому большая часть синего цвета рассеивается еще до того, как свет достигнет низкой высоты. В результате мы видим больше красного и оранжевого, чем синего и зеленого. В пасмурные дни капли воды и кристаллики льда, из которых состоят облака, рассеивают все волны, из которых состоит солнечный свет, равномерно, и в результате он приобретает белесый цвет.

Вопреки нашим наивным предположениям, свет, который воспринимают наши глаза, составляет менее половины всего излучения, которое Земля получает от Солнца. Без научных приборов, регистрирующих то, что невидимо для глаз, наши знания о физической реальности были бы крайне ограниченны. Но, даже располагая необходимыми инструментами, мы должны помнить, что их возможности имеют границы, и обзор с нашего Острова знаний обладает своим горизонтом. Чем больше мы видим, тем к большему стремимся.

Видимый свет составляет всего 40 % от всего солнечного излучения, попадающего в верхние слои нашей атмосферы. Оставшаяся часть – это 50 % инфракрасного и 10 % ультрафиолетового излучения. Благодаря защите атмосферы лишь 3 % ультрафиолетовых лучей достигают поверхности планеты, а объем видимого света увеличивается до 44 %. В случае с Солнцем (как и во многих других случаях) то, что мы видим, и то, что мы получаем, – это совсем не одно и то же. Наши органы чувств были сформированы естественным отбором так, чтобы повысить наши шансы на выживание на этой планете. Жители других планет с другим атмосферным составом и большим или меньшим количеством звездного света могли бы развить у себя чувствительность к другим частям электромагнитного спектра. Даже на Земле ночные животные, пещерные и глубоководные существа имеют разные механизмы адаптации (вспомните, например, об эхолокации у летучих мышей и о свечении глубоководных рыб).

Все приведенные выше объяснения стали возможными в результате триумфа физики XIX века – описания света как вибрации электромагнитных полей. Каждый источник электромагнитного излучения можно свести к осциллирующим, или ускоряющимся, электрическим зарядам. В 1861–1862 годах шотландский физик Джеймс Клерк Максвелл, работавший в лондонском Кингс‑колледже (моей альма‑матер), доказал существование связи между электричеством и магнетизмом, что позволило ему совершенно по‑новому описать взаимодействие материальных объектов. До этого подобные описания строились на понятии сил – например, силы притяжения Ньютона или силы, которую мы прилагаем к педалям велосипеда, когда едем в гору. Вдохновленный идеями Майкла Фарадея, Максвелл предложил свою знаменитую теорию электромагнитного поля. С тех пор именно она применяется в физике для объяснения взаимодействия самых разных объектов, от электронов до звезд. Сила – это производная поля.

Данная концепция стала настолько всеобъемлющей, что применяется уже не только к взаимодействиям между объектами. Мы можем говорить о температурном поле в помещении (то есть о том, как температура меняется от точки к точке) и о поле скорости воды в реке или ветра в атмосфере. Электрический заряд создает вокруг себя электрическое поле, представляющее собой его пространственное проявление. Другой заряд, приближающийся к первому, сможет почувствовать его присутствие на расстоянии, причем чем ближе будет первый заряд, тем выше окажется значение поля. Одинаковые заряды притягиваются, а противоположные отталкиваются. То же самое происходит и с магнитами. Вы можете провести быстрый эксперимент: снимите два магнита с холодильника и попытайтесь соединить их. В какой‑то момент они начнут сопротивляться вашим действиям. Судя по всему, пространство вокруг магнитов наполнено чем‑то, что заставляет их отталкиваться друг от друга. Это что‑то называется магнитным полем. Точно так же и масса вашего тела создает вокруг вас гравитационное поле. Другие массы чувствуют его присутствие и притягиваются к нему с силой, обратно пропорциональной квадрату расстояния до вас.

При колебании электрического заряда поле колеблется вместе с ним. Чтобы понять, как это происходит, представьте себе пробку, болтающуюся на поверхности воды. По воде от нее расходятся двухмерные круги. Колеблющийся заряд точно так же испускает электрические волны, но в трех измерениях. По мере колебания его скорости также возникает магнитное поле, которое начинает колебаться вместе с электрическим. Одно поле цепляется за другое, и оба они постепенно удаляются от заряда. Отличие от кругов на воде только в том, что эти поля направлены перпендикулярно друг другу, как концы креста. Если заряд колеблется вверх и вниз, магнитное поле будет двигаться вправо и влево и волны будут перемещаться в направлении, перпендикулярном кресту (мы говорим об электромагнитных волнах, что они поперечны).[110]

Итак, движущийся заряд создает колеблющиеся электрические и магнитные поля, которые расходятся в пространстве. Максвелл показал, что в вакууме скорость такого их распространения равняется скорости света. Это подтолкнуло его к потрясающему выводу: свет представляет собой электромагнитное излучение, электрические и магнитные поля, распространяющиеся в форме волн. Единственное различие между, например, красным и фиолетовым цветом состоит в том, что длина волны у первого больше, чем у второго. Между короткими и длинными волнами в электромагнитном спектре находятся и другие типы излучения: радиоволны, микроволны, инфракрасные волны, видимое излучение, ультрафиолетовые волны, рентгеновские и гамма‑лучи (самые короткие и обладающие наибольшей энергией).

Если свет (как уже упоминалось ранее, этим словом я обозначаю все виды электромагнитного излучения) – это волна, то в чем он распространяется? Другие, более привычные нам волны представляют собой колебания среды: волны могут возникать на поверхности воды, звуковые волны – это изменения давления воздуха, а если взять веревку за один конец и хорошенько встряхнуть, по ней тоже пойдут волнообразные движения. Так в чем же появляются волны света? Это одна из множества связанных с ним загадок. Сегодня мы знаем, что свету не нужна материальная среда для распространения. Он может двигаться в вакууме, и для этого ему нужно всего лишь содействие электрических и магнитных полей. Разумеется, свет может проходить и через материальную среду. Каждый из нас хотя бы раз открывал глаза под водой или смотрел через стекло. В результате движения в среде свет теряет часть своей скорости, так как световые волны заставляют электрические заряды, из которых состоит материальная среда, колебаться вместе с ними.

Для физика XIX века было очевидно, что свет отличается от других волн, так как для движения ему не требуется обычная среда. Тем не менее, по мнению Максвелла, что‑то должно было выступать в ее роли. Он потратил много лет на создание все более и более странных механических моделей для объяснения распространения электромагнитных волн в пространстве. Например, он пытался ввести понятие новой среды, люминофорного эфира, предназначенной исключительно для переноса световых волн. За два века до этого Ньютон и голландский ученый Христиан Гюйгенс независимо друг от друга взялись за изучение природы света и пришли к противоположным выводам. Ньютон, преданный последователь атомизма, предположил, что свет состоит из крошечных корпускул, но не смог доказать, что все свойства света соответствуют этому утверждению. С пропусканием и отражением света (в форме прямых лучей) проблем не возникало. Гораздо сложнее было объяснить явления рефракции (изменения в направлении распространения луча при прохождении через разные среды) и дифракции (распределения волн при прохождении через узкую преграду). Гюйгенс, в свою очередь, считал, что свет – это волна, которая движется в среде, подобной эфиру.

Борьба между приверженцами корпускулярной и волновой теории продолжалась до начала XIX века, когда Томас Юнг и Огюстен Жан Френель независимо пришли к концепции света как поперечной волны. В частности, Юнг провел серию экспериментов, включающих в себя дифракцию, и убедительно доказал, что свет является волной. Янг прорезал в листе бумаги прямоугольное отверстие, поместил в него человеческий волос, а затем подсветил его свечой. В своих заметках от 1802 года он пишет: «Когда волос приблизился к краю свечи достаточно близко, чтобы на него падало достаточно света, начали появляться [чередующиеся черные и белые] полосы и легко было заметить, что их ширина была пропорциональна видимой ширине волоса, от которого они отходили».[111] К тому моменту, как Максвелл доказал, что свет представляет собой поперечную электромагнитную волну, корпускулярная теория Ньютона была забыта. Эксперименты показывали, что свет при столкновении с препятствием ведет себя так же, как волны воды, и демонстрирует те же интерференционные узоры.

Однако чем больше внимания уделялось природе света, тем более странным казалось понятие эфира. Как и флогистон и теплород, он казался скорее не физическим, а магическим явлением. Чтобы заполнять собой все пространство, люминофорный эфир должен был быть жидкостью, подобной эфиру Аристотеля. Но при этом он одновременно должен был быть крепче стали (чтобы обеспечивать движение коротких волн) и прозрачнее стекла (иначе мы не могли бы видеть свет далеких звезд). Кроме того, у него не должно было быть ни массы, ни вязкости и он не должен был бы мешать орбитальному движению планет. Тот факт, что большая часть самых светлых научных умов того времени приняла подобную странную концепцию с полной уверенностью, показывает, как сложно отказаться от предубеждений, рожденных опытом. Волна должна была в чем‑то распространяться. Ученому XIX века было гораздо проще поверить в эфир, чем предположить, что свет может двигаться в вакууме. Космос снова казался людям наполненным какой‑то размытой субстанцией, недоступной для восприятия.

Для того чтобы эфир можно было признать полноправным физическим явлением, его следовало прямо или косвенно обнаружить. Учитывая его сверхъестественные свойства, первый вариант исключался, ведь для того, чтобы что‑то можно было обнаружить, это что‑то должно взаимодействовать с приборами. А какой детектор сможет засечь нечто неосязаемое и не имеющее вязкости? Итак, требовались косвенные доказательства, и найти их было не так‑то просто.

В 1887 году Альберт Михельсон и Эдвард Морли провели блестящий эксперимент, чтобы измерить влияние эфира на распространение света. Они исходили из предположения о том, что если эфир действительно существует, то он представляет собой инертную среду в состоянии абсолютного покоя – что‑то вроде воздуха в тихий ясный день. Максвелл доказал, что электромагнитные волны движутся в неподвижном эфире со скоростью света. Но уже со времен Галилея ученым было известно, что скорости измеряются с использованием заданной точки отсчета. Например, если вы стоите у магазина, а мимо вас проезжает машина, вы измеряете ее скорость относительно вашего состояния покоя. Но если вы не стоите, а едете на велосипеде в том же направлении, то скорость машины относительно вас будет меньше. Введение абсолютной системы координат не соответствовало понятию относительности, так как в таком случае все скорости можно было бы измерять относительно эфира. Каким бы радикальным ни казалось это объяснение, альтернатива, то есть движение света в вакууме, выглядела еще хуже.

У Михельсона и Морли возникла хитроумная идея. Раз Земля движется вокруг Солнца, то ей навстречу должен дуть эфирный ветер. То же самое происходит, когда мы едем на велосипеде или в машине даже в самую безветренную погоду. Мы все равно чувствуем движение воздуха себе в лицо. Если пустить луч света в направлении, противоположном направлению эфирного ветра, скорость его движения должна будет замедлиться. И наоборот, луч, направленный по ходу вращения Земли вокруг Солнца, не должен встретить никаких препятствий. Научное сообщество было шокировано, когда Михельсон и Морли провели измерения в двух перпендикулярных направлениях и не обнаружили никакой разницы. Их эксперимент показал, что свет движется с одинаковой скоростью, в какую бы сторону он ни светил. Если эфир и существовал, то свет, очевидно, никак на него не реагировал, что лишало эфир всякого смысла.[112]

Началась паника. Многие пытались придумать правдоподобные объяснения тому, почему эксперимент «провалился». К примеру, ирландский физик Джордж Фицджеральд и голландский ученый Хендрик Антон Лоренц независимо друг от друга предположили, что любой материальный объект, движущийся в направлении, противоположном эфиру, немного сжимается, включая и приборы для наблюдения. Чем быстрее движение, тем сильнее должно было быть сжатие. Если бы теория Фицджеральда и Лоренца была правдой, она бы объяснила, почему эксперимент не выявил никакой разницы: свет замедлился при движении против эфира, но ему пришлось пройти меньшее расстояние из‑за уменьшения длины измерительного прибора. Соответственно, опыт Михельсона и Морли не показывал ровно ничего нового.

Хотя некоторых ученых эта теория успокоила, убедить она не смогла никого, потому что возникла на пустом месте. И даже если Фицджеральд и Лоренц были правы, оставался еще один базовый вопрос: почему в противоречие всей ньютоновской физике, в которой законы природы остаются неизменными для любой системы отсчета с постоянной скоростью, электромагнетизму требовалась универсальная система координат? Два кита классической научной картины мира, механика Ньютона и электромагнетизм Максвелла, с трудом соответствовали друг другу. Что‑то, очевидно, шло не так. Но ответ уже был близок.

Эйнштейн начал свою знаменитую работу 1905 года о специальной теории относительности с замечания о том, что теории Максвелла требуется абсолютная система отсчета. Затем он отмечает, что в электромагнетизме, как и во всей физике, любое количество наблюдателей, движущихся с постоянной скоростью, должно получать одинаковые результаты наблюдений. Эйнштейн пишет, что «безуспешные попытки определить движение Земли относительно “световой среды” показывают, что электродинамические явления, равно как и механические, не имеют никаких свойств, соответствующих понятию абсолютного покоя».[113] В его революционном труде говорится о том, что пространство сокращается по направлению движения, а ход часов (или в более широком смысле время) замедляется. Итак, идея Фицджеральда и Лоренца не была ошибочна. Неверной была лишь ее интерпретация, предполагающая существование универсальной инертной среды. Эйнштейн избавляется от идеи эфира и объясняет, что электромагнетизм Максвелла полностью согласуется с любой инерциальной системой отсчета (то есть движущейся с постоянной скоростью) до тех пор, пока действует новый постулат, сформулированный им следующим образом: «Свет всегда распространяется в вакууме с определенной скоростью с, которая не зависит от движения источника света».[114]

Итак, вместо эфира как абсолютной (и несуществующей) системы отсчета вводилась другая постоянная – скорость света. Эйнштейн просто заменил одну константу другой! У него не было никаких доказательств своей правоты – он лишь руководствовался принципом о том, что физические законы должны оставаться неизменными в любой инерциальной системе отсчета, то есть что Природа должна проявлять свою фундаментальную симметрию. Какой смысл имела бы наука, если бы каждый наблюдатель руководствовался своими законами и получал отличные от других результаты? Таким образом, Эйнштейн поднял принцип относительности (то есть единообразия законов Природы в инерциальных системах отсчета) до уровня постулата.

Его второй постулат был еще более смелым. Почему свет отличается от всего остального? Почему он всегда движется с одной скоростью? Эйнштейн не знал, почему скорость света неизменно составляет 299 792 453 метра в секунду, но он предположил, что она постоянна, чтобы увязать электромагнетизм с принципом относительности. Постоянство скорости света было ценой, которую он готов был заплатить за восстановление порядка в физике. Отбросив идею эфира, Эйнштейн сделал свет еще более загадочным – волной, способной двигаться в пустоте с постоянной скоростью. И это было лишь начало.

Работа по специальной теории относительности была одним из четырех трудов, которые 26‑летний Эйнштейн опубликовал в 1905 году, и первый из них казался ему самым революционным. Статья вышла под ничем не примечательным заголовком «Об одной эвристической точке зрения, касающейся возникновения и превращения света». В начале работы Эйнштейн подчеркивает, что теория Максвелла о волновой природе света не соответствует общепринятым представлениям об атомах и электронах как составных элементах материи. Волны имеют продолжительность в пространстве, в то время как атомы дискретны. Затем он выдвигает свою «эвристическую точку зрения»: так же как и любая материя, свет состоит из крошечных частиц, «квантов, энергия которых рассчитывается как [h × f ]».[115] В этой формуле h – это постоянная Планка, природная константа, ассоциирующаяся со всеми квантовыми явлениями, а f – частота пучка света. Если свет не монохромен, то есть состоит из волн разной частоты, в нем имеется множество видов таких квантов, по одному для каждого типа волны. Если Эйнштейн был прав, он возродил корпускулярную теорию света. Представьте, как ликовал бы Ньютон!

Эйнштейн был достаточно осторожен в своих заявлениях, поэтому писал, что волновая гипотеза все еще оставалась в силе, до тех пор, пока она не применялась к «возникновению и превращению света».[116] Иными словами, атомистическое и волновое поведение света дополняют друг друга, как две стороны одной медали. В зависимости от изучаемого физического явления свет можно рассматривать и как волну, и как частицу. Точно так же мы рассматриваем воду при комнатной температуре одновременно как жидкость и как взвесь отдельных молекул. То, чем является вода, зависит от контекста. То же самое верно и для света, хотя на самом деле он не частица и не волна.

Цель физики состоит не в том, чтобы наделять характеристики объектов реальности каким бы то ни было окончательным смыслом («вода/свет – это то‑то и ничто иное»), а в том, чтобы объяснять результаты экспериментов. Концепции, которые создают ученые, – это инструменты объяснения, искусственные конструкции, придающие значение изменениям. Для физика не так важно, чем что‑то является на самом деле. Куда важнее, насколько эффективно его объяснение. На самом деле чем дальше мы углубляемся в квантовый мир, тем меньше смысла остается в понятии бытия как перманентного состояния. Ни один объект здесь не то, чем кажется, и ничто не остается собой надолго. Материя и свет кружатся в танце постоянной трансформации. Эйнштейн со своей эвристической точкой зрения открыл дверь в мир непостоянства, и нет ничего удивительного, что путь ему освещал свет.

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.022 с.