Алгоритм проектирования шпиндельного узла — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Алгоритм проектирования шпиндельного узла

2020-11-19 85
Алгоритм проектирования шпиндельного узла 0.00 из 5.00 0 оценок
Заказать работу

 

Структурная модель системы проектирования шпиндельного узла представлена на рис. 8.

На первом этапе проектирования из технического задания выбираются исходные данные: группа станка; класс точности станка; мощность главного привода; максимальная и минимальная частоты вращения шпинделя; диаметр шпинделя в передней опоре и тип системы смазки (могут выбираться при проектировании или могут быть заданы) и устанавливаются проектные параметры.

Проектными параметрами называют неизвестные величины, значения которых определяются в процессе проектирования. Они подразделяются на независимые и зависимые переменные параметры, которые полностью и однозначно определяют конструкцию шпиндельного узла.

Исходя из системного подхода, проектирование направлено прежде всего на получение заданных требований к обработанной на станке детали.

Принимая станок за систему, а шпиндель с опорами за подсистему, структурными составляющими модели будут передняя и задняя опоры, привод, уплотнения, передняя консоль, элементы крепления, элементы системы смазки, механизм зажима заготовки или инструмента, элементы диагностики и автоматики, которые можно рассматривать как подсистемы более низкого ранга, а детали и их части и поверхности как элементы.

К независимым проектным параметрам относятся:

1. Компоновочные параметры: тип опор; число опор; компоновка опор (компоновочная схема); тип системы смазки.

Тип системы смазки опор и условия их работы, как правило, определяют конструкцию уплотнений опор.

2. Геометрические параметры: диаметр шпинделя в передней опоре (d); длина переднего конца шпинделя (а); межопорное расстояние (1); расстояние от передней опоры до приводного элемента (b).

3. Внутренние параметры: радиальный внутренний зазор-натяг опор качения (е); предварительный натяг опор качения (А о); зазор-натяг посадки опор качения (Н); точность опор и сопряженных деталей; параметры опор скольжения.

 

1.                                                       Исходные данные

Класс точности станка Мощность N max, кВт Частота вращения n max, мин-1 Диаметр шпинделя в первой опоре d, мм Тип системы смазки

2.                        Назначение численных значений проектных критериев

Точность Жесткость Нагрев опор Долговечность Себестоимость

3.                                                         Выбор типа опор

Подшипники качения Гидростатические подшипники Гидродинамические подшипники Подшипники с воздушной смазкой Магнитные подшипники

 

 


4. Выбор диаметра d (если не задан) d = (dn) табл./ n max

 

4а. Выбор компоновочной схемы

d = N max/(0,15 – 0,85)

 

5.                         Определение d к, d м, d з, а (проработка эскизного проекта)

 

6.                           Расчет межопорного расстояния l опт, коррекция l Расчет места расположения приводного элемента В

7. Расчет жесткости шпиндельных узлов или перемещения переднего конца шпинделя y

8.                                      Расчет динамических характеристик Расчет точности опор и деталей шпиндельных узлов Расчет допусков на размер посадочных поверхностей Выбор и расчет уплотнений Расчет параметров системы смазки Тепловой расчет Расчет долговечности

9.                              Оформление технического и рабочего проектов

 

Рис. 8. Алгоритм проектирования шпиндельного узла

К зависимым проектным параметрам относятся: диаметр шпинделя на переднем конце (d к); диаметр шпинделя между опорами (d м); диаметр шпинделя в задней опоре (d 3) и диаметр шпинделя на заднем конце; диаметр отверстия в шпинделе (di).

На втором этапе определяются проектные критерии.

Оценка качества проектируемого шпиндельного узла осуществляется по проектным критериям, которые выражаются в терминах цели системы, нахождение или оценка значений которых является целью поисковых операций. Общий набор основных проектных критериев следующий.

Точность вращения шпинделя. Характеризуется радиальным, осевым и торцовым биениями переднего конца шпинделя, круглостью и волнистостью обработанных на чистовых режимах образцов. Устанавливается по ГОСТу и по требуемой точности обработки деталей.

Жесткость. Различают радиальную и осевую, статическую и динамическую жесткость (j) на переднем конце шпинделя от действия сил резания и сил со стороны привода. Динамическая жесткость оценивается по величине, обратной радиус-вектору, снятому с АФЧХ упругой системы при определенной частоте w. Она разная на разных частотах w и характеризуется отношением амплитуды возмущающей силы, меняющейся по гармоническому закону, к амплитуде соответствующего перемещения. При w = 0 получаем статическую жесткость.

Для шпиндельных узлов современных токарных, фрезерных, расточных и некоторых шлифовальных станков с ЧПУ отношение передаваемой мощности к радиальной жесткости

 

.

Нагрев опор. Характеризуется температурой нагрева опор на максимальной частоте вращения.

С целью ограничения температурных деформаций ЭНИМС установил следующие допустимые значения температуры нагрева опор в зависимости от класса точности станка (табл. 3).

 

Таблица 3

 

Допустимые значения температуры нагрева наружного кольца подшипника качения в °С

 

Класс точности станка Н П В А С
Допустимая температура нагрева наружного кольца подшипника, °С 70 50 40 35 28

 

Виброустойчивость оценивается по амплитуде волнистости на обработанной поверхности, амплитуде колебаний корпуса шпиндельной бабки, максимальным количеством металла, срезаемого с заготовки в единицу времени без потери станком устойчивости, частотами собственных колебаний.

Виброустойчивость прямо зависит от динамической жесткости, которая в свою очередь зависит от статической жесткости и демпфирования.

Долговечность оценивается продолжительностью работы в часах до тех пор, пока показатели качества работы (точность, нагрев, виброустойчивость и др.) находятся в допустимых пределах.

Экономичность оценивается суммарными приведенными затратами на изготовление и эксплуатацию.

На третьем этапе проектирования выбирается тип опор шпинделя.

Выбирается прежде всего в зависимости от требуемой точности вращения шпинделя, точности обработки и частоты вращения.

Для выбора типа опор предложена табл. 4.

 

Таблица 4

 


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.