Виды средств электрических измерений. — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Виды средств электрических измерений.

2020-08-20 146
Виды средств электрических измерений. 0.00 из 5.00 0 оценок
Заказать работу

Параллельные АЦП

АЦП этого типа осуществляют квантование сигнала одновременно с помощью набора компараторов, включенных параллельно источнику входного сигнала. На рис. 3 показана реализация параллельного метода АЦ-преобразования для 3-разрядного числа.

С помощью трех двоичных разрядов можно представить восемь различных чисел, включая нуль. Необходимо, следовательно, семь компараторов. Семь соответствующих эквидистантных опорных напряжений образуются с помощью резистивного делителя.

Благодаря одновременной работе компараторов параллельный АЦП является самым быстрым. Например, восьмиразрядный преобразователь типа МАХ104 позволяет получить 1 млрд отсчетов в секунду при времени задержки прохождения сигнала не более 1,2 нс. Недостатком этой схемы является высокая сложность. Действительно, N-разрядный параллельный АЦП сдержит 2N-1 компараторов и 2N согласованных резисторов. Следствием этого является высокая стоимость (сотни долларов США) и значительная потребляемая мощность. Тот же МАХ104, например, потребляет около 4 Вт.

Последовательно-параллельные АЦП

Последовательно-параллельные АЦП являются компромиссом между стремлением получить высокое быстродействие и желанием сделать это по возможности меньшей ценой. Последовательно-параллельные АЦП занимают промежуточное положение по разрешающей способности и быстродействию между параллельными АЦП и АЦП последовательного приближения. Последовательно-параллельные АЦП подразделяют на многоступенчатые, многотактные и конвеерные.

Многоступенчатые АЦП

В многоступенчатом АЦП процесс преобразования входного сигнала разделен в пространстве. В качестве примера на рис. 4 представлена схема двухступенчатого 8-разрядного АЦП.

 

Верхний по схеме АЦП осуществляет грубое преобразование сигнала в четыре старших разряда выходного кода. Цифровые сигналы с выхода АЦП поступают на выходной регистр и одновременно на вход 4-разрядного быстродействующего ЦАП. Во многих ИМС многоступенчатых АЦП (AD9042, AD9070 и др.) этот ЦАП выполнен по схеме суммирования токов на дифференциальных переключателях, но некоторые (AD775, AD9040A и др.) содержат ЦАП с суммированием напряжений. Остаток от вычитания выходного напряжения ЦАП из входного напряжения схемы поступает на вход АЦП2, опорное напряжение которого в 16 раз меньше, чем у АЦП1. Как следствие, квант АЦП2 в 16 раз меньше кванта АЦП1. Этот остаток, преобразованный АЦП2 в цифровую форму представляет собой четыре младших разряда выходного кода. Различие между АЦП1 и АЦП2 заключается прежде всего в требовании к точности: у АЦП1 точность должна быть такой же как у 8-разрядного преобразователя, в то время как АЦП2 может иметь точность 4-разрядного.

Грубо приближенная и точная величины должны, естественно, соответствовать одному и тому же входному напряжению Uвх(tj). Из-за наличия задержки сигнала в первой ступени возникает, однако, временнoе запаздывание. Поэтому при использовании этого способа входное напряжение необходимо поддерживать постоянным с помощью устройства выборки-хранения до тех пор, пока не будет получено все число.

Многотактные последовательно-параллельные АЦП

Конвеерные АЦП

Быстродействие многоступенчатого АЦП можно повысить, применив конвеерный принцип многоступенчатой обработки входного сигнала. В обыкновенном многоступенчатом АЦП (рис. 4) вначале происходит формирование старших разрядов выходного слова преобразователем АЦП1, а затем идет период установления выходного сигнала ЦАП. На этом интервале АЦП2 простаивает. На втором этапе во время преобразования остатка преобразователем АЦП2 простаивает АЦП1. Введя элементы задержки аналогового и цифрового сигналов между ступенями преобразователя, получим конвеерный АЦП, схема 8-разрядного варианта которого приведена на рис. 6.

Конвеерная архитектура позволяет существенно (в несколько раз) повысить максимальную частоту выборок многоступенчатого АЦП. То, что при этом сохраняется суммарная задержка прохождения сигнала, соответствующая обычному многоступенчатому АЦП с равным числом ступеней, не имеет существенного значения, так как время последующей цифровой обработки этих сигналов все равно многократно превосходит эту задержку. За счет этого можно без проигрыша в быстродействии увеличить число ступеней АЦП, понизив разрядность каждой ступени. В свою очередь, увеличение числа ступеней преобразования уменьшает сложность АЦП. Действительно, например, для построения 12-разрядного АЦП из четырех 3-разрядных необходимо 28 компараторов, тогда как его реализация из двух 6-разрядных потребует 126 компараторов.

Последовательные АЦП

АЦП последовательного счета

Этот преобразователь является типичным примером последовательных АЦП с единичными приближениями и состоит из компаратора, счетчика и ЦАП (рис. 8). На один вход компаратора поступает входной сигнал, а на другой - сигнал обратной связи с ЦАП.

Таким образом, особенностью АЦП последовательного счета является небольшая частота дискретизации, достигающая нескольких килогерц. Достоинством АЦП данного класса является сравнительная простота построения, определяемая последовательным характером выполнения процесса преобразования.

Интегрирующие АЦП

Недостатком рассмотренных выше последовательных АЦП является низкая помехоустойчивость результатов преобразования. Действительно, выборка мгновенного значения входного напряжения, обычно включает слагаемое в виде мгновенного значения помехи. Впоследствии при цифровой обработке последовательности выборок эта составляющая может быть подавлена, однако на это требуется время и вычислительные ресурсы. В АЦП, рассмотренных ниже, входной сигнал интегрируется либо непрерывно, либо на определенном временнoм интервале, длительность которого обычно выбирается кратной периоду помехи. Это позволяет во многих случаях подавить помеху еще на этапе преобразования. Платой за это является пониженное быстродействие интегрирующих АЦП.

Сигма-дельта АЦП

АЦП многотактного интегрирования имеют ряд недостатков. Во-первых, нелинейность переходной статической характеристики операционного усилителя, на котором выполняют интегратор, заметным образом сказывается на интегральной нелинейности характеристики преобразования АЦП высокого разрешения. Для уменьшения влияния этого фактора АЦП изготавливают многотактными. Например, 13-разрядный AD7550 выполняет преобразование в четыре такта. Другим недостатком этих АЦП является то обстоятельство, что интегрирование входного сигнала занимает в цикле преобразования только приблизительно третью часть. Две трети цикла преобразователь не принимает входной сигнал. Это ухудшает помехоподавляющие свойства интегрирующего АЦП. В-третьих, АЦП многотактного интегрирования должен быть снабжен довольно большим количеством внешних резисторов и конденсаторов с высококачественным диэлектриком, что значительно увеличивает место, занимаемое преобразователем на плате и, как следствие, усиливает влияние помех.

Эти недостатки во многом устранены в конструкции сигма-дельта АЦП (в ранней литературе эти преобразователи назывались АЦП с уравновешиванием или балансом зарядов). Своим названием эти преобразователи обязаны наличием в них двух блоков: сумматора (обозначение операции - S) и интегратора (обозначение операции - D). Один из принципов, заложенных в такого рода преобразователях, позволяющий уменьшить погрешность, вносимую шумами, а следовательно увеличить разрешающую способность - это усреднение результатов измерения на большом интервале времени.

5. АЦП параллельного преобразования.

АЦП этого типа осуществляют квантование сигнала одновременно с помощью набора компараторов, включенных параллельно источнику входного сигнала. На рис. 3 показана реализация параллельного метода АЦ-преобразования для 3-разрядного числа.

С помощью трех двоичных разрядов можно представить восемь различных чисел, включая нуль. Необходимо, следовательно, семь компараторов. Семь соответствующих эквидистантных опорных напряжений образуются с помощью резистивного делителя.

Если приложенное входное напряжение не выходит за пределы диапазона от 5/2h, до 7/2h, где h=Uоп/7 - квант входного напряжения, соответствующий единице младшего разряда АЦП, то компараторы с 1-го по 3-й устанавливаются в состояние 1, а компараторы с 4-го по 7-й - в состояние 0. Преобразование этой группы кодов в трехзначное двоичное число выполняет логическое устройство, называемое приоритетным шифратором, диаграмма состояний которого приведена в табл.1.

Таблица 1

Входное напряжение

Состояние компараторов

Выходы

Uвх/h К7 К6 К5 К4 К3 К2 К1 Q2 Q1 Q0
0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1

Подключение приоритетного шифратора непосредственно к выходу АЦП может привести к ошибочному результату при считывании выходного кода. Рассмотрим, например переход от трех к четырем, или в двоичном коде от 011 к 100. Если старший разряд вследствие меньшего времени задержки изменит свое состояние раньше других разрядов, то временно на выходе возникнет число 111, т.е. семь. Величина ошибки в этом случае составит половину измеряемого диапазона.

Так как результаты АЦ-преобразования записываются, как правило, в запоминающее устройство, существует вероятность получить полностью неверную величину. Решить эту проблему можно, например, с помощью устройства выборки-хранения (УВХ). Некоторые интегральные микросхемы (ИМС) параллельных АЦП, например МАХ100, снабжаются сверхскоростными УВХ, имеющими время выборки порядка 0,1 нс. Другой путь состоит в использовании кода Грея, характерной особенностью которого является изменение только одной кодовой позиции при переходе от одного кодового значения к другому. Наконец, в некоторых АЦП (например, МАХ1151) для снижения вероятности сбоев при параллельном АЦ-преобразовании используется двухтактный цикл, когда сначала состояния выходов компараторов фиксируются, а затем, после установления состояния приоритетного шифратора, подачей активного фронта на синхровход выходного регистра в него записывают выходное слово АЦП.

Как видно из табл. 1, при увеличении входного сигнала компараторы устанавливаются в состояние 1 по очереди - снизу вверх. Такая очередность не гарантируется при быстром нарастании входного сигнала, так как из-за различия во временах задержки компараторы могут переключаться в другом порядке. Приоритетное кодирование позволяет избежать ошибки, возможной в этом случае, благодаря тому, что единицы в младших разрядах не принимаются во внимание приоритетным шифратором.

Благодаря одновременной работе компараторов параллельный АЦП является самым быстрым. Например, восьмиразрядный преобразователь типа МАХ104 позволяет получить 1 млрд отсчетов в секунду при времени задержки прохождения сигнала не более 1,2 нс. Недостатком этой схемы является высокая сложность. Действительно, N-разрядный параллельный АЦП сдержит 2N-1 компараторов и 2N согласованных резисторов. Следствием этого является высокая стоимость (сотни долларов США) и значительная потребляемая мощность. Тот же МАХ104, например, потребляет около 4 Вт.

Интегрирующие АЦП.

Схема выборки-хранения.

При сборе информации и ее последующем преобразовании часто бывает необходимо зафиксировать значение аналогового сигнала в некоторый момент времени. Некоторые типы аналогово-цифровых преобразователей, например, последовательного приближения, могут давать совершенно непредсказуемые ошибки, если их входной сигнал не зафиксирован во время преобразования. При смене входного кода цифро-аналоговых преобразователей из-за неодновременности установления разрядов наблюдаются выбросы выходного напряжения. Для устранения этого явления на время установления также следует зафиксировать выходной сигнал ЦАП. Устройства выборки - хранения (УВХ) (слежения - хранения), выполняющие эту функцию, должны на интервале времени выборки (слежения) повторять на выходе входной аналоговый сигнал, а при переключении режима на хранение сохранять последнее значение выходного напряжения до поступления сигнала выборки. Схема простейшего УВХ приведена на рис. 1а.

 

Рис. 1. Устройство выборки - хранения

 

Когда ключ S замкнут, выходное напряжение схемы повторяет входное, т.е. Uвых = Uвх (рис. 1б). При размыкании ключа Uвых сохраняет свое значение, последнее перед размыканием. Выходной повторитель на ОУ препятствует разряду конденсатора хранения Схр на нагрузку схемы. Входное сопротивление повторителя должно быть как можно больше, поэтому обычно применяют ОУ с полевыми транзисторами на входе.

Простейшая схема УВХ имеет ряд недостатков:

При замкнутом ключе источник входного сигнала имеет значительную емкостную нагрузку. Если источником является ОУ, это обычно приводит к его самовозбуждению.

ОУ с полевыми транзисторами на входе, применяемые в качестве буферных повторителей, имеют значительное смещение нуля.

Эти недостатки во многом устранены в ИМС устройства выборки - хранения LF398 (отечественный аналог - 1100СК2), которая в течение многих лет была по существу промышленным стандартом. Функциональная схема этой ИМС приведена на рис. 2. Здесь схема имеет общую отрицательную обратную связь, охватывающую всю схему - с выхода усилителя ОУ2 на вход усилителя ОУ1.

 

Рис. 2. Функциональная схема УВХ 1100СК2

 

Когда коммутатор находится в замкнутом состоянии, потенциал выхода операционного усилителя ОУ1 вследствие действия общей отрицательной обратной связи устанавливается таким, что Uвых отличается от Uвх на величину напряжения смещения ОУ1. При этом смещение, возникающее из-за наличия коммутатора и ОУ2, сводится к нулю. Диоды в этом состоянии схемы заперты, так как падение напряжения на них, равное указанному смещению, достаточно мало (<= 20мВ). При размыкании коммутатора управляющим сигналом выходное напряжение остается неизменным. Резистор R1 и диоды предотвращают насыщение ОУ1, которое могло бы возникнуть из-за размыкания общей отрицательной обратной связи в этом режиме. Это снижает время переходного процесса при замыкании коммутатора. Усилитель ОУ1 обеспечивает высокое входное сопротивление УВХ. Он выполнен по схеме с биполярными транзисторами на входе, что легко позволяет получить смещение нуля схемы в пределах 5 мВ. Резистор R2 ограничивает ток заряда конденсатора хранения.

Основные характеристики УВХ:

Точностные характеристики

Напряжение смещения нуля Uсм, определяемое практически смещением нуля ОУ1.

Дрейф фиксируемого напряжения при заданной емкости Схр

d Uвых / d t= Iр / Схр,

где Iр - ток разряда конденсатора. Он складывается из токов утечки конденсатора и коммутатора, а также из входного тока усилителя ОУ2.

При заданном токе утечки величину дрейфа можно уменьшить путем увеличения емкости конденсатора Схр. Однако это ухудшает динамические характеристики схемы.

Динамические характеристики

Время выборки tв определяет, как долго при самых неблагоприятных условиях длится процесс заряда конденсатора хранения до величины входного напряжения с заданным уровнем допуска. Это время пропорционально емкости Схр. Перевод УВХ в режим хранения до окончания интервала выборки чреват значительными ошибками.

Апертурная задержка tа. Это период между моментом снятия управляющего напряжения и фактическим запиранием последовательного коммутатора.

В табл. 1 приведены основные характеристики некоторых типов УВХ, выпускаемых промышленностью.

 

Таблица 1

Тип УВХ Uсм, мВ Дрейф В/с Время выборки мкс Апертурная задержка, нс Uпит,В Iпотр, мА Примечания
1100СК2 5 0,21 0,41,2 100 +/-15 4,5 Промышленный стандарт
SHC5320 1,5 0,51 1,51,3 25 +/-15 -  
АD9101 10 180004 7 нс 0,25 +5; -5,2 70 Сверхбыстродействующее УВХ
АD781 3 0,014 0,63 35 +/-12 4  
АD684 4 14 13 35 +/-12 25 Счетверенное

Примечания:

- Схр =1000 пФ;

- до точности 0,1%;

- до точности 0,01%;

- встроенный конденсатор хранения

 

Устройства на переключаемых конденсаторах

В последнее время наблюдается исключительно быстрый рост производства и применения МОП-структур, имеющих много преимуществ перед биполярными схемами. У МОП-структур большой входной импеданс, и они управляются напряжением (в отличие от биполярных схем, управляемых по существу током). Комплементарные МОП-структуры практически не потребляют мощности в статическом режиме. Технология МОП-структур обеспечивает большую плотность упаковки, чем биполярных. Наконец, эта технология позволяет простым способом реализовать в ИМС конденсаторы относительно большой емкости. Такие МОП-конденсаторы в сочетании с МОП-ключами позволяют заменить резисторы в некоторых типах ИМС и построить аналоговые вычислительные схемы со значительно лучшими точностными и эксплуатационными характеристиками. Замена резисторов конденсаторами, в частности, позволяет повысить точность аналоговых и аналого-цифровых устройств и уменьшить количество внешних элементов, подключаемых к микросхеме. В табл. 2 представлены сравнительные характеристики интегральных резисторов и МОП-конденсаторов.

 

Таблица 2

Элемент Технология изготовления Точность изготовления,% Температурный коэффициент 10-6К-1 Коэффициент влияния напряжения 10-6В-1
Резистор Ионная имплантация с шириной 40 мкм +/-0,12 400 800
Конденсатор МОП с толщиной диэлектрика 0,1 мкм +/-0,06 26 10

 

Высокая точность изготовления интегральных МОП-конденсаторов и их стабильность способствовали тому, что в последние годы получили развитие способы обработки сигналов, использующие явление дискретного переноса зарядов. Один из путей реализации этих способов состоит в применении схем с переключаемыми конденсаторами.

Рассмотрим реализацию аналогового интегратора с применением переключаемого конденсатора. На рис. 3а приведена схема обычного аналогового интегратора.

Передаточная функция этой схемы имеет вид

 

, (1)

 

а частотная характеристика

, (2)

Рис. 3. Схемы интеграторов: а) - на RC-цепи, б) - с коммутируемым конденсатором

 

На рис. 3 б показан интегратор, в котором резистор R1 имитируется с помощью схемы с переключаемым конденсатором. Этот интегратор работает следующим образом. Коммутатор периодически переключается из положения 1 в положение 2 и обратно с периодом Т. В момент nT конденсатор С1 заряжается до напряжения uвх(nT), поэтому накопленный на нем заряд составляет С1uвх(nT). После переключения коммутатора из положения 1 в положение 2 в момент nТ+Т/2 конденсатор С1 разряжается на вход ОУ с конденсатором С2 в обратной связи. Поскольку входное дифференциальное напряжение и входные токи идеального ОУ равны нулю, конденсатор С1 разрядится полностью и его заряд суммируется с зарядом, накопленным на конденсаторе С2. В результате в момент (n+1)Т справедливо следующее уравнение зарядов:

С2uвых[(n+1)T] = С2uвых(nT) - С1uвх(nT). (3)

Здесь знак "-" обусловлен отрицательной обратной связью. Применив к обеим частям уравнения (3) z-преобразование, получим уравнение

zС2Uвых(z) = С2Uвых(z) - С1Uвх(z). (4)

Определенная из этого уравнения передаточная функция имеет вид

 

, (5)

Представляет интерес сравнение свойств интеграторов, показанных на рис. 3. Перейдем к частотным харктеристикам, подставив в (5) z=exp(jwT). Получим

 

, (6)

 

При wT стремящемся к 0 выражение в скобках в знаменателе правой части уравнения (6) неограниченно приближается к jwT. Таким образом, для частот входного сигнала, низких относительно частоты переключения коммутатора f=1/T, можно приближенно записать

 

, (7)

 

Сравнивая выражения (2) и (7), находим, что в схеме на рис. 3 б коммутируемый конденсатор имитирует входной резистор схемы на рис 3 а, с сопротивлением, равным T/С1. Поэтому, увеличивая частоту переключения коммутатора, мы уменьшаем эквивалентную постоянную времени интегрирования интегратора.

Применение интеграторов с переключаемыми конденсаторами в ИМС фильтров вместо обычных интеграторов дает два существенных преимущества. Во-первых, коэффициент передачи интегратора зависит только от отношения двух конденсаторов, а не от их абсолютных величин. Вообще говоря, можно достаточно просто создать на кремниевой подложке ИМС пару любых однотипных согласованных элементов, в то время как получение разнотипных элементов (резистора и конденсатора) с точными значениями и высокой стабильностью весьма затруднительно (различия температурных коэффициентов сопротивления (ТКС) и емкости (ТКЕ) могут быть значительными!). Поэтому ИМС фильтров на переключаемых конденсаторах значительно дешевле. Например, фильтр нижних частот 8-го порядка на ИМС МАХ291 (переключаемые конденсаторы) стоит почти в 5 раз дешевле аналогичного фильтра на двух ИМС MAX270 (RC-интеграторы).

Второе преимущество фильтров на переключаемых конденсаторах состоит в возможности настройки их характеристической частоты (т.е. центральной частоты полосового фильтра или точки -3 дБ фильтра нижних частот) изменением только тактовой частоты. Это объясняется тем, что характеристическая частота фильтра, построенного на основе метода переменных состояния, пропорциональна коэффициенту передачи интегратора (или, что то же, обратнопропорциональна постоянной времени интегрирования). Это позволяет выпускать фильтры 8-го порядка в корпусе с восемью выводами без внешних времязадающих элементов (например, MAX291), в то время как ИМС фильтров с RC-интеграторами имеют значительно больше выводов и требуют подключения значительного количества точных резисторов (например, микросхема МАХ274 имеет 24 вывода; ее типовая схема включения содержит 15 внешних резисторов).

Теперь о недостатках фильтров на переключаемых конденсаторах. Такие фильтры имеют два неприятных свойства, которые обусловлены присутствием периодического тактового сигнала. Первое, это сквозное прохождение сигнала тактовой частоты, а именно наличие некоторого выходного сигнала (с напряжением приблизительно от 10 до 25 мВ) с частотой тактового колебания, напряжение которого не зависит от прикладываемого входного сигнала. Чаще всего это не имеет существенного значения, поскольку этот сигнал значительно удален от полосы, занимаемой обрабатываемым сигналом (обычно разработчики ИМС задают частоту коммутации в 100 раз (реже в 50 раз) больше характеристической частоты фильтров). Если же такое сквозное прохождение тактового сигнала нежелательно, то для его подавления обычно используют простой ФНЧ первого или второго порядка. В состав ИМС фильтров на переключаемых конденсаторах обычно включают неинвертирующий повторитель, на котором может быть построен такой фильтр.

Вторая проблема более тонкого свойства связана с наложением спектров. Любые компоненты входного сигнала, которые отстоят по частоте от частоты тактового сигнала на величину, соответствующую частотам полосы пропускания, не будут подавлены. Например, при использовании ИМС MAX291 в качестве ФНЧ с частотой среза 1 кГц (при тактовой частоте в 100 кГц) все спектральные компоненты входного сигнала в диапазоне от 99 до 101 кГц будут преобразованы в полосу частот от постоянного тока до частоты 1 кГц. Поэтому в случае, если в спектре входного сигнала есть заметные компоненты частот, близких к тактовой частоте, перед входом фильтра следует включить простой предварительный фильтр нижних частот.

Линейные стабилизаторы напряжения

Почти любая электронная схема - от простых схем на транзисторах и операционных усилителях и до сложнейших цифровых и микропроцессорных систем - требует для своей работы одного или нескольких стабильных источников постоянного тока. Простые нерегулируемые источники питания типа "трансформатор - неуправляемый выпрямитель - фильтр нижних частот" во многих случаях не годятся, так как их выходное напряжение зависит от тока нагрузки и напряжения в сети. К счастью, легко построить источник стабильного питания, используя отрицательную обратную связь и сравнивая выходное напряжение с некоторым постоянным эталонным (опорным) напряжением. Такие стабилизированные источники питания универсальны и могут быть изготовлены в виде интегральных микросхем стабилизаторов напряжения.

Как правило, регулирующим элементом ИМС стабилизаторов напряжения является биполярный либо полевой транзистор. Если этот транзистор работает в активном режиме, то стабилизатор называют линейным (непрерывным), а если регулирующий транзистор работает в ключевом режиме - импульсным.

Схемотехника линейных стабилизаторов напряжения

Микросхемы источников питания относятся к так называемым интеллектуальным силовым приборам, то-есть к таким, у которых на кристалле помимо силовых транзисторов расположена более или менее сложная схема управления ими. Принципиальная трудность создания таких приборов заключается в том, что силовые транзисторы рассеивают значительную энергию, вызывая тем самым нагрев кристалла с существенным градиентом температур. Это резко ухудшает стабильность узлов схемы управления, таких как источник опорного напряжения и дифференциальный каскад усилителя ошибки.

Монолитный линейный интегральный стабилизатор напряжения был впервые разработан Р. Видларом (США) в 1967 году. Эта микросхема (mА723) содержит регулирующий транзистор, включаемый последовательно между источником нестабилизированного напряжения и нагрузкой, усилитель ошибки и термокомпенсированный источник опорного напряжения. Схема оказалась настолько удачной, что в начале 70-х годов выпуск ее доходил до 2 млн. штук в месяц! По массовости применения среди аналоговых ИМС линейные интегральные стабилизаторы напряжения стоят на втором месте после операционных усилителей.

 

 

11. Характеристики АЦП. Идеальная передаточная характеристика.

Передаточная характеристика АЦП - это функция зависимости кода на выходе АЦП от напряжения на его входе. Такой график представляет собой кусочно-линейную функцию из 2N "ступеней", где N - разрядность АЦП. Каждый горизонтальный отрезок этой функции соответствует одному из значений выходного кода АЦП (см. рис. 7). Если соединить линиями начала этих горизонтальных отрезков (на границах перехода от одного значения кода к другому), то идеальная передаточная характеристика будет представлять собой прямую линию, проходящую через начало координат.


Рис. 7. Идеальная передаточная характеристика 3-х разрядного АЦП

Рис. 7 иллюстрирует идеальную передаточную характеристику для 3-х разрядного АЦП с контрольными точками на границах перехода кода. Выходной код принимает наименьшее значение (000b) при значении входного сигнала от 0 до 1/8 полной шкалы (максимального значения кода этого АЦП). Также следует отметить, что АЦП достигнет значения кода полной шкалы (111b) при 7/8 полной шкалы, а не при значении полной шкалы. Т.о. переход в максимальное значение на выходе происходит не при напряжении полной шкалы, а при значении, меньшем на наименьший значащий разряд (LSB), чем входное напряжение полной шкалы. Передаточная характеристика может быть реализована со смещением -1/2 LSB. Это достигается смещением передаточной характеристики влево, что смещает погрешность квантования из диапазона -1... 0 LSB в диапазон -1/2... +1/2 LSB.


Рис. 8. Передаточная характеристика 3-х разрядного АЦП со смещением на -1/2LSB

Из-за технологического разброса параметров при изготовлении интегральных микросхем реальные АЦП не имеют идеальной передаточной характеристики. Отклонения от идеальной передаточной характеристики определяют статическую погрешность АЦП и приводятся в технической документации.


 

12. Характеристики АЦП. Аддитивная погрешность.

Идеальная передаточная характеристика АЦП пересекает начало координат, а первый переход кода происходит при достижении значения 1 LSB. Аддитивная погрешность (погрешность смещения) может быть определена как смещение всей передаточной характеристики влево или вправо относительно оси входного напряжения, как показано на рис.9. Таким образом, в определение аддитивной погрешности АЦП намеренно включено смещение 1/2 LSB.


Рис. 9. Аддитивная погрешность (Offset Error)


13. Характеристики АЦП. Мультипликативная погрешность.

Мультипликативная погрешность (погрешность полной шкалы) представляет собой разность между идеальной и реальной передаточными характеристиками в точке максимального выходного значения при условии нулевой аддитивной погрешности (смещение отсутствует). Это проявляется как изменение наклона передаточной функции, что иллюстрирует рис. 10.


14. Характеристики АЦП. Дифференциальная нелинейность.

У идеальной передаточной характеристики АЦП ширина каждой "ступеньки" должна быть одинакова. Разница в длине горизонтальных отрезков этой кусочно-линейной функции из 2N "ступеней" представляет собой дифференциальную нелинейность (DNL).

Величина наименьшего значащего разряда у АЦП составляет Vref/2N, где Vref - опорное напряжение, N - разрешение АЦП. Разность напряжений между каждым кодовым переходом должна быть равна величине LSB. Отклонение этой разности от LSB определяются как дифференциальная нелинейность. На рисунке это показано как неравные промежутки между "шагами" кода или как "размытость" границ переходов на передаточной характеристике АЦП.


Рис. 11. Дифференциальная нелинейность (DNL)

 

 

15.  Характеристики АЦП. Интегральная нелинейность.

Интегральная нелинейность (INL) - это погрешность, которая вызывается отклонением линейной функции передаточной характеристики АЦП от прямой линии, как показано на рис. 12. Обычно передаточная функция с интегральной нелинейностью аппроксимируется прямой линией по методу наименьших квадратов. Часто аппроксимирующей прямой просто соединяют наименьшее и наибольшее значения. Интегральную нелинейность определяют путем сравнения напряжений, при которых происходят кодовые переходы. Для идеального АЦП эти переходы будут происходить при значениях входного напряжения, точно кратных LSB. А для реального преобразователя такое условие может выполняться с погрешностью. Разность между "идеальными" уровнями напряжения, при которых происходит кодовый переход, и их реальными значениями выражается в единицах LSB и называется интегральной нелинейностью.


16. Характеристики АЦП. Отношение сигнал/шум.

Отношение "сигнал/шум" (SNR) - это отношение среднеквадратического значения величины входного сигнала к среднеквадратическому значению величины шума (за исключением гармонических искажений), выраженное в децибелах:

SNR(dB) = 20 log [ Vsignal(rms)/ Vnoise(rms) ]

Это значение позволяет определить долю шума в измеряемом сигнале по отношению к полезному сигналу.


Рис. 14. SNR - Отношение "сигнал/шум"

Шум, измеряемый при расчете SNR, не включает гармонические искажения, но включает шум квантования. Для АЦП с определенным разрешением именно шум квантования ограничивает возможности преобразователя теоретически лучшим значением отношения сигнал/шум, которое определяется как:

SNR(db) = 6.02 N + 1.76,

где N - разрешение АЦП.

Спектр шума квантования АЦП стандартных архитектур имеет равномерное распределение по частоте. Поэтому величина этого шума не может быть уменьшена путем увеличения времени преобразования и последующего усреднения результатов. Шум квантования может быть снижен только путем проведения измерений с помощью АЦП большей разрядности.

Особенность сигма-дельта АЦП состоит в том, что спектр шума квантования у него распределен по частоте неравномерно - он смещен в сторону высоких частот. Поэтому, увеличивая время измерения (и, соответственно, количество выборок измеряемого сигнала), накапливая и затем усредняя полученную выборку (фильтр нижних частот), можно получить результат измерений с более высокой точностью. Естественно, при этом общее время преобразования будет возрастать.

Другие источника шума АЦП включают тепловой шум, шум составляющей 1/f и джиттер опорной частоты.


17. Характеристики АЦП. Общие гармонические искажения. Отношение «сигнал/шум и искажения».

Нелинейность в результатах преобразования данных приводит к появлению гармонических искажений. Такие искажения наблюдаются как "выбросы" в спектре частот на четных и нечетных гармониках измеряемого сигнала (рис. 15).

Эти искажения определяют как общие гармонические искажения (THD). Они определяются как:

Величина гармонических искажений уменьшается на высоких частотах до точки, в которой амплитуда гармоник становится меньше, чем уровень шума. Таким образом, если мы анализируем вклад гармонических искажений в результаты преобразования, это можно делать либо во всем спектре частот, ограничивая при этом амплитуду гармоник уровнем шума, либо ограничивая полосу частот для анализа. Например, если в нашей системе стоит ФНЧ, то высокие частоты нам просто неинтересны и высокочастотные гармоники не подлежат учету.


Рис. 15. БПФ отражает гармонические искажения

Отношение "сигнал/шум и искажения" (SiNAD) более полно описывает шумовые характеристики АЦП. SiNAD учитывает величину как шума, так и гармонических искажений по о


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.118 с.