Клетка – как универсальная форма организации живой материи. Основные структурные компоненты эукариотической клетки и их характеристика. Сходства и отличия животной и растительной клеток. — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Клетка – как универсальная форма организации живой материи. Основные структурные компоненты эукариотической клетки и их характеристика. Сходства и отличия животной и растительной клеток.

2020-08-20 312
Клетка – как универсальная форма организации живой материи. Основные структурные компоненты эукариотической клетки и их характеристика. Сходства и отличия животной и растительной клеток. 0.00 из 5.00 0 оценок
Заказать работу

Клетка — элементарная структурная и функциональная единица растительных и животных организмов, способная к самовоспроизведению и развитию, ограниченная полупроницаемой мембраной.

Основные компоненты клетки: плазматическая мембрана, ядро, цитоплазма, органеллы и включения

Плазматическая мембрана.

Отделяет клетку от окружающей среды, также клетка с ее помощью взаимодействует с окружающей средой и другими клетками. Состоит из двух слоев липидов, гидрофильные части, состоящие из остатка молекул спирта глицерина, обращены к внешним сторонам, а гидрофобные, состоящие из остатков молекул жирных кислот,- внутрь. Там же могут располагаться молекулы белков (снаружи, внутри или пронизывают мембрану насквозь). На наружной поверхности билипидного слоя имеются также и углеводы в виде гликолипидов и гликопротеидов. В животных клетках углеводный компонент мембраны называется гликокаликсом.

Плазмалемма выполняет отграничивающую, барьерную и транспортную функции. Благодаря свойству избирательной проницаемости она регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества.

Цитоплазма. В цитоплазме различают основное вещество (матрикс, гиалоплазма), включения и органеллы. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Гиалоплазма - прозрачный коллоидный раствор из органических (белки, аминокислоты, липиды и углеводы) и неорганических (вода, катионы кальция и калия, анионы угольной и фосфорной кислот, растворенный кислород, углекислый газ и другие газы) соединений. Оно образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом.

 

Органеллы — это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции. Выделяют органеллы общего значения и специальные. Последние в значительном количестве присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток.

К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласты, в которых происходит фотосинтез.

 

Включениями называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

 

Ядро. Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Функциональная роль ядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы.

Основу ядерного сока, или матрикса, составляют белки. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуют нитчатые белки, что указывает на выполнение ими опорной функции.

Ядрышко представляет собой структуру, в которой происходит образование и созревание рРНК. Хроматин является интерфазной формой существования хромосом клетки.

6.Строение цитоплазматической мембраны. Виды белков, липидов и углеводов, входящих в состав мембран, их значение в формировании функции мембраны.

Основу мембраны составляет липидный бислой – двойной слой молекул липидов, которые обладают свойством амфифильности (содержат как гидрофильные, так и гидрофобные функциональные группы). В липидном бислое гидрофобные участки молекул взаимодействуют между собой, а гидрофильные участки обращены в окружающую водную среду.

Мембранные липиды играют роль растворителя мембранных белков, создавая жидкую среду, в которой они могут функционировать. По степени влияния на структуру бислоя и по силе взаимодействия с ним мембранные белки делят на интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой) и периферические (расположенные на внешней или прилегающие к внутренней сторонам мембраны).

 

Углеводы в составе мембран не представлены самостоятельными соединениями, а обнаруживаются только в соединении с белками (гликопротеины) или липидами (гликолипиды). Длина углеводных цепей колеблется от двух до восемнадцати остатков моносахаридов. Большая часть углеводов расположена на наружной поверхности плазматической мембраны. Функции углеводов в биомембранах – контроль за межклеточными взаимодействиями, поддержание иммунного статуса, рецепция, обеспечение стабильности белковых молекул в мембране.

Мембраны состоят из липидов трех классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединенными к ним углеводами) состоят из двух длинных гидрофобных углеводородных хвостов, которые связаны с заряженной гидрофильной головой. Холестерол придает мембране жесткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться.

Функции плазматической мембраны:

- регуляция обмена в-в между клеткой и окр.средой, обеспечивая постоянство внутриклеточного состава

- обладая избирательной проницаемостью мембрана ограничивает или исключает доступ в клетку одним в-вам и пропускает другие

- сохраняет форму клетки, защищая её от повреждений

- участвует в формировании контактов с другими клетками

- через мембрану молекулярные частицы могут перемещаться путем пассивного транспорта без затратыэнергии (простая диффузия, осмос или с помощью белков-переносчиков) и активного транспорта – позволяет накачивать в клетку молекулы против градиента концентрации и затратой энергии

7.Химический состав клетки, ее физико-химическое состояние и осмотические свойства протоплазмы клетки.

Исследованиями обнаружено, что из 104 элементов периодический системы Д. И. Менделеева в состав протоплазмы входит 96. Четыре элемента — углерод, кислород, водород и азот —составляют примерно 96% массы тела человека или животного. На долю других четырех элементов — кальция, фосфора, калия и серы — приходится только 3 %, а на все остальные — примерно 1 %. Содержание отдельных элементов в протоплазме составляет доли процента, и одни из них встречаются в одних клетках, другие —в других.

Важнейшими органическими веществами являются: белки, жиры, углеводы, нуклеиновые кислоты и аденозинтрифосфорная кислота (АТФ).

Цитоплазма – это сложная, многофазная коллоидная система, так как биологические макромолекулы (в первую очередь белки) и некоторые липиды – это типичные коллоиды.

Различают: дисперсную фазу (комплексы макромолекул) и дисперсионную среду (воду, в которую погружены макромолекулы).

Белковые (и др.) молекулы имеют заряд (чаще «минус»), а так как молекулы воды полярны (диполи), то они образуют вокруг белковых (и др. макромолекул) гидратную оболочку. Такие частицы называются мицеллами. На поверхности мицелл имеется заряд, и пока он сохраняется, частицы отталкиваются друг от друга и находятся в воде во взвешенном состоянии. Такое состояние цитоплазмы называется золь (жидкое состояние). Если заряд частично исчезает, мицеллы отталкиваются меньше и сближаются, при этом образуется гель. При различных внешних воздействиях и внутренних процессах цитоплазма может обратимо переходить из золя в гель и обратно.

Таким образом, свойства цитоплазмы обусловлены её коллоидным состоянием и в конечном итоге составом и свойствами её характерных белковых макромолекул.

Основные свойства:

1) вязкость – несмешиваемость с водой;

2) эластичность – способность восстанавливать форму после внешних воздействий;

3) полупроницаемость – цитоплазма ограниченно и избирательно проницаема для разных веществ (кроме воды и углекислого газа);

4) способность к движению (циклоз) – важное и не до конца изученное свойство цитоплазмы. Циклоз облегчает передвижение веществ в клетке, её обмен со средой.

 8. Органеллы общего назначения. Их структура и функции. Значение для жизнедеятельности клетки.

Органеллы — постоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы общего назначения: эндоплазматическая сеть: гладкая, шероховатая; комплекс  Гольджи, митохондрии, рибосомы, лизосомы, клеточный центр, пластиды (хлоропласты, хромопласты, лейкопласты), также некоторые постоянные структуры цитоплазмы, лишенные мембран микротрубочки и микрофиламенты. Органеллы общего назначения делят на мембранные и немембранные. Мембранные в свою очередь делятся на одномембранные и двумембранные. СМ. 11/12/13

9.Органеллы специального назначения. Их структура и функции. Значение для жизнедеятельности клетки.

 

Органеллы специального назначения присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие переносчиков нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы.

Микроворсинки мелкие(0,1-1 мкм) неподвижные вы­пячивания цитоплазмы апикальной части клетки, покрытые клеточной мембраной. Они значительно увеличивают площадь поверхности клетки, облегчая процессы всасывания веществ из окружающей среды (например, микроворсинки эпителия кишечника).

Мерцательныереснички выпячивания цитолеммы (длиной 5-10 мкм, толщиной 0,2 мкм) апикальной части клетки. Внутри реснички расположена осевая нить, состоящая из 9 дуплетов (пар) периферических микротрубочек и одной пары центральных микротрубочек, связанных с периферическими белковыми нитями. В основании реснички расположено базальное тельце, по строению сходное с центриолью.

Жгутики по строению сходны с ресничками, но гораздо крупнее (имеют длину 50 мкм и толщину 0,2 – 0,5 мкм).

Миофибриллы – упорядоченно расположенные в поперечнополосатых мышечных волокнах комплексы нитей ак­тина и миозина. Обеспечивают сокращение мышечных волокон.

Нейрофибриллы – пучки нейротрубочек и нейрофиламентов в нервных клетках. Обеспечивают транспорт веществ в нервных клетках.

Акросомысперматозоидов – преобразованный комплекс Гольджи, предназначенных для разрушения оболочки яйцеклетки при оплодотворении.

 

 

 

 

 

10. Одномембранные органоиды клетки. Их структура и функции. Значение для жизнедеятельности клетки. Примеры.

К одномембранным относят:

Эндоплазматический ретикулум (ЭПР). Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПР. Различают два вида ЭПР: шероховатый, содержащий на своей поверхности рибосомы и гладкий, мембраны которого рибосом не несут. Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая, тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций. Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.

Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен.

Важнейшая функция комплекса Гольджи - выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из простых сахаров, созревание белков, образование лизосом.

 

Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диаметром 0,2-0,8 мкм, содержащие до 60 гидролитических ферментов. Образование лизосом происходит в аппарате Гольджи.

Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида.

Различают: первичные и вторичные лизосомы - лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями):

Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом.

Вакуоли — крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. Вакуоли поглощают избыток воды и затем выводят ее наружу путем сокращений.

 

11. Двумембранные органоиды клетки. Их структура и функции. Значение для жизнедеятельности клетки. Примеры.

К двумембранным органоидам относятся:

Пластиды – органеллы, характерные только для растительных клеток и встречающиеся во всех живых клетках зеленых растений. Внутренняя мембрана хлоропласта образует выпячивания внутрь стромы —тилакоиды.

Двумембранные органеллы, обычно овальной формы, в которых помимо фотосинтеза протекают многие промежуточные стадии обмена веществ (синтез пуринов и пиримидов, большинства аминокислот, всех жирных кислот и т.д.). Различают три вида пластид (хлоропласты, хромопласты, лейкопласты), для каждого из которых характерна своя функция.

Хлоропласты. Наружная мембрана – гладкая, внутренняя образует впячивания или мешочки – тилакоиды. Тилакоиды собраны в стопки (напоминают стопки монет) – по 50 штук. Такие стопки называются граны. В мембранах тиллакоидов находится хлорофилл. Внутреннее содержимое – строма – содержит 1 кольцевую молекулу ДНК, РНК, белки. В хлоропластах осуществляется фотосинтез. Кроме того, пигмент хлорофилл окрашивает листья, молодые стебли, незрелые плоды в зеленый цвет.

Хромопласты – нефотосинтезирующие пластиды, встречаются в цитоплазме клеток цветков, стеблей, плодов, листьев, придавая им соответствующую окраску. Хромопласты имеют более простое строение (почти отсутствуют тилакоиды). Содержат разные пигменты – каротиноиды – красные, желтые, оранжевые, коричневые. Запас питательных веществ.

Лейкопласты – бесцветные пластиды, располагаются в неокрашенных частях растений (корни, клубни, корневища и т.д.). Лейкопласты также более просто организованы, лишены пигментов, либо пигменты в них находятся в неактивной форме. В лейкопластах одних клеток запасаются зерна крахмала – это аминопласты (клубни картофеля). В лейкопластах других – жиры – липидопласты (орехи, подсолнечник), или белки – протеинопласты (в некоторых семенах).

Митохондрии - неотъемлемые компоненты всех эукариотических клеток, толщиной 0,5 мкм и длиной до 7—10 мкм. Митохондрии ограничены двумя мембранами — наружной и внутренней. Наружная мембрана отделяет ее от гиалоплазмы. Внутренняя мембрана образует множество впячиваний внутрь митохондрий — так называемых крист.

На мембране крист или внутри нее располагаются ферменты, которые участвуют в кислородном дыхании Ограниченное ею внутреннее содержимое митохондрии {матрикс) по составу близко к цитоплазме. Матрикс содержит различные белки, в том числе ферменты, ДНК (кольцевая молекула), все типы РНК, аминокислоты, рибосомы, ряд витаминов. ДНК обеспечивает некоторую генетическую автономность митохондрий, хотя в целом их работа координируется ДНК ядра. Митохондрии являются энергетической станцией клетки.

 

12. Немембранные органоиды клетки. Их структура и функции. Значение для жизнедеятельности клетки. Примеры.

Немембранные органеллы:

Клеточный центр. В клетках большинства животных, а также некоторых грибов, водорослей, мхов и папоротников имеются центриоли. Расположены они обычно в центре клетки, что и определило их название. Центриоль представляет собой полый цилиндр толщиной 200 и длиной 300-500 нм. Стенка центриоли образована 9 триплетами микротрубочек, толщиной 24 нм, построенных из глобулярного белка тубулина.  Они располагаются парами перпендикулярно одна к другой. Клеточный центр принимает участие в образовании веретена деления; при митозе центриоли расходятся к полюсам материнской клетки. Кроме того, центриоли принимают участие в образовании ресничек и жгутиков.

Рибосомы — рибонуклеопротеидные гранулы размером 25 нм. Состоят из двух субъединиц: малой (10 нм) и большой (15 нм), между которыми при биосинтезе белка (трансляцией) располагается нить информационной РНК. При этом малая субъединица связывается с РНК, а большая – катализирует образование полипептидных цепей. Субъединицы рибосом образуются в ядрышках, а затем выходят из ядра в цитоплазму через ядерные поры. Сборка рибосом из их субъединиц происходит перед началом синтеза белка, а по завершению синтеза полипептидной цепочки они опять распадаются. В синтетически активной клетке содержится несколько миллионов рибосом, которые образуют около 5% её сухой массы. Различают свободные рибосомы (не связаны с мембранами и расположены в гиалоплазме во взвешенном состоянии) и несвободные рибосомы (связанные с мембранами цитоплазматической сети). Рибосомы могут располагаться по одиночке (в этом случае они функционально неактивны), но чаще связаны в цепочки, которые нанизаны, как бусинки, на нитевидные молекулы информационной РНК (полирибосомы, полисомы). Свободные рибосомы синтезируют белки для собственных нужд клетки, а несвободные – на экспорт.

Цитоскелет представляет собой сложную динамичную трёхмерную сеть микротрубочек, микрофибрилл и микрофиламентов, которая обеспечивает: 1) поддержание и изменение формы клетки, 2) распределение и перемещение компонентов клетки, 3) транспорт веществ в клетку и из неё, 4) подвижность клетки, 5) участвует в межклеточных соединениях.

Микротрубочки имеют толщину 24 нм и длину несколько микрон. Толщина стенки микротрубочки 5 нм, а диаметр просвета соответственно 14 нм. Состоят из 13 тубулиновых протофибрилл, идущих по спирали. Микротрубочки входят в состав веретена деления и обеспечивают расхождение хромосом во время митоза, поддерживают форму клетки и обеспечивают её подвижность, участвуют в транспорте макромолекул в клетке. С микротрубочками связан белок кинезин, который представляет собой фермент, расщепляющий АТФ и преобразующий энергию её распада в механическую энергию. Одним концом молекула кинезина связана с определённой органеллой, а другой с помощью энергии АТФ скользит вдоль микротрубочки, перемещая органеллу в цитоплазме.

Промежуточные нити (микрофибриллы) белковые нити толщиной 8-11 нм. Они образуют каркас клетки, поддерживая её форму и упругость, а также обеспечивают упорядоченное расположение органоидов в клетке.

Микрофиламенты – белковые нити толщиной 5-7 нм. Они имеются во всех клетках и расположены в её кортикальном слое (под цитолеммой). Состав образующих их белков в разных клетках различен (актин, миозин, тропомиозин). Они образуют скелет, каркас клетки, её внутриклточный сократи­тельный аппарат, обеспечивают изменения формы и движение клеток, ток цитоплазмы, эндоцитоз и экзоцитоз.

 

 

13.Роль ДНК и РНК в передаче наследственной информации. Основные этапы: транскрипция, процессинг, трансляция.

Главную роль в процессе передачи и реализации наследственной информации играют нуклеиновые кислоты. Основная биологическая функция ДНК заключается в хранении, постоянном самовозобновлении,

самовоспроизведении и передаче генетической информации клетке. Информация хранится в последовательности нуклеотидов. Эта последовательность нуклеотидов, или генетический код, контролирует последовательность аминокислот в молекуле белка. ДНК является матрицей для построения иРНК. ДНК принимает участие только в одном этапе биосинтеза белка: транскрипции.

Транскрипция – синтез РНК с использованием ДНК в качестве матрицы. В результате возникает 3 типа РНК: матричная (мРНК), рибосомная (рРНК), транспортная (тРНК).

 

Стадии транскрипции:

1). Инициация – образование нескольких начальных звеньев РНК.

2). Элонгация – продолжается дальнейшее расплетение ДНК и синтез РНК по кодирующей цепи.

3). Терминация – когда полимераза достигает терминатора (точки отсчета транскрипции), она немедленно

отщепляется от ДНК, локальный гибрид ДНК-РНК разрушается и новосинтезированная РНК транспортируется из ядра в цитоплазму. Транскрипция заканчивается.              

 

Трансляция – синтез полипептидной цепи с использованием мРНК в роли матрицы. В трансляции участвуют все три основных типа РНК: м-, р -, тРНК. мРНК является информационной матрицей; тРНК «подносят»

аминокислоты и узнают кодоны мРНК; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.

 

Процессинг - совокупность биохимических реакций, при которых пре-РНК укорачиваются, подвергаются химическим модификациям, в результате которых образуются зрелые РНК. В этом процессе участвует четвертый тип РНК – малая ядерная РНК (мяРНК).

 

 

Белки синтезируют все клетки, кроме безъядерных. Структура белка определяется ядерной ДНК. Информация о последовательности аминокислот в одной полипептидной цепи находится в участке ДНК, который называется ген. В ДНК заложена информация о первичной структуре белка. Код ДНК един для всех организмов. Каждой аминокислоте соответствует три нуклеотида, образующих триплет, или кодон. Такое кодирование избыточно: возможны 64 комбинации триплетов, тогда как аминокислот только 20. Существуют также управляющие триплеты, например, обозначающие начало и конец гена.
Синтез белка начинается с транскрипции, т.е. синтеза иРНК по матрице ДНК. Процесс идет с помощью фермента полимеразы по принципу комплементарности и начинается с определенного участка ДНК. Синтезированная иРНК поступает в цитоплазму на рибосомы, где и идет синтез белка.
тРНК имеет структуру, похожую на лист клевера, и обеспечивает перенос аминокислот к рибосомам. Каждая аминокислота прикрепляется к акцепторному участку соответствующей тРНК, расположенному на «черешке листа». Противоположный конец тРНК называется антикодоном и несет информацию о триплете, соответствующем данной аминокислоте. Существует более 20 видов тРНК.
Перенос информации с иРНК на белок во время его синтеза называется трансляцией. Собранные в полисомы рибосомы двигаются по иРНК; движение происходит последовательно, по триплетам. В месте контакта рибосомы с иРНК работает фермент, собирающий белок из аминокислот, доставляемых к рибосомам тРНК. При этом происходит сравнение кодона иРНК с антикодоном тРНК; если они комплементарны, фермент (синтетаза) «сшивает» аминокислоты, а рибосома продвигается вперед на один кодон.
Синтез одной молекулы белка обычно идет 1–2 мин (один шаг занимает 0,2 с).
 

 

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.073 с.