Определение количества фермента по его активности — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Определение количества фермента по его активности

2020-04-01 263
Определение количества фермента по его активности 0.00 из 5.00 0 оценок
Заказать работу

 

Содержание фермента в данном растворе или в тканевом экстракте можно определить, измеряя его каталитический эффект. Для этого необходимо знать:

) общую стехиометрию катализируемой реакции;

) возможную потребность в кофакторах - в ионах металлов или коферментах;

) зависимость активности фермента от концентраций субстрата и кофактора, т.е. величины Km как для субстрата, так и для кофактора;

) значение рН, соответствующее максимальной активности фермента;

) область температур, при которых фермент устойчив и сохраняет высокую активность.

Кроме того, необходимо иметь в своем распоряжении какую-нибудь достаточно простую аналитическую методику, позволяющую определять скорость исчезновения субстрата или скорость появления продуктов реакции.

Всегда, когда это возможно, анализ на содержание фермента проводится в стандартных условиях, при которых поддерживается оптимальное значение рН и концентрация субстрата, превышающая концентрацию насыщения; в этом случае начальная скорость соответствует нулевому порядку реакции в отношении субстрата и пропорциональна только концентрации фермента. Для ферментов, нуждающихся в кофакторах - ионах металлов или коферментах, концентрация этих кофакторов также должна превышать концентрацию насыщения, с тем, чтобы фактором, лимитирующим скорость реакции, была концентрация фермента. Обычно измерение скорости образования продукта реакции может быть проведено с большей точностью, чем измерение скорости исчезновения субстрата, так как для поддержания кинетики нулевого порядка субстрат, как правило, должен присутствовать в сравнительно высоких концентрациях. Скорость образования продукта (или продуктов) реакции можно измерять химическими или спектр о фотометрическими методами. Второй способ более удобен, поскольку он позволяет непрерывно регистрировать ход реакции на лепте самописца. [5]

По международному соглашению за единицу ферментативной активности принимается количество фермента, способное вызвать превращение одного микромоля субстрата в минуту при 25°С в оптимальных условиях. Удельной активностью фермента называют число единиц ферментативной активности в расчете на 1 мг белка. Эту величину используют в качестве критерия чистоты ферментного препарата; она возрастает по мере очистки фермента и для идеально чистого препарата достигает максимального значения. Под числом оборотов понимают число молекул субстрата, подвергающихся превращению в единицу времени в расчете на одну молекулу фермента (или на один активный центр) в условиях, когда скорость реакции лимитируется концентрацией фермента.

 

Активация ферментов

 

Регуляция ферментов может осуществляться путем взаимодействия с ними различных биологических компонентов или чужеродных соединений (например, лекарств и ядов), которые принято называть модификаторами или регуляторами ферментов. Под действием модификаторов на фермент реакция может ускоряться (активаторы) или замедляться ( ингибиторы).

Активация ферментов определяется по ускорению биохимических реакций, наступающему после действия модификатора. Одну группу активаторов составляют вещества, влияющие на область активного центра фермента. К ним относятся кофакторы ферментов и субстраты. Кофакторы (ионы металлов и коферменты) являются не только обязательными структурными элементами сложных ферментов, но и по существу их активаторами.

Ионы металлов бывают довольно специфичными активаторами. Часто для некоторых ферментов требуются ионы не одного, а нескольких металлов. Например, для Na+, K+-АТФазы, осуществляющей транспорт одновалентных катионов через клеточную мембрану, необходимы в качестве активаторов ионы магния, натрия и калия.

Активация с помощью ионов металлов осуществляется по разным механизмам. В некоторых ферментах они входят в состав каталитического участка. В ряде случаев ионы металлов облегчают связывание субстрата с активным центром фермента, образуя как бы своеобразный мостик. Нередко металл соединяется не с ферментом, а с субстратом, образуя металлосубстратный комплекс, который предпочтителен для действия фермента. [1]

Специфичностью участия коферментов в связывании и катализе субстрата объясняется активация ими ферментативных реакций. Особенно заметно активирующее влияние кофакторов при действии на фермент, который не насыщен кофакторами.

Субстрат тоже в известных пределах концентраций является активатором. После достижения насыщающих концентраций субстрата активность фермента не возрастает. Субстрат повышает стабильность фермента и облегчает формирование нужной конформации активного центра фермента.

Ионы металлов, коферменты и их предшественники и активные аналоги,

субстраты можно использовать на практике как препараты, активирующие ферменты.

Активация некоторых ферментов может осуществляться путем модификации, не затрагивающей активный центр их молекул. Возможно несколько вариантов такой модификации:

1) активация неактивного предшественника - профермента, или зимогена. Например, превращение пепсиногена в пепсин;

2) активация путем присоединения какой-либо специфической модифицирующей группы к молекуле фермента;

3) активация путем диссоциации неактивного комплекса белок - активный фермент. [6]

 

Ингибирование ферментов

 

Существуют реагенты, способные взаимодействовать более или менее специфично с той или иной боковой цепью белков, что приводит к ингибированию активности фермента. Это явление позволяет изучать природу аминокислотных боковых остатков, принимающих участие в данной ферментативной реакции. Однако на практике следует учитывать многочисленные тонкости, делающие однозначную интерпретацию результатов, полученных со специфическими ингибиторами, довольно трудной и зачастую сомнительной. Прежде всего, чтобы реакция с ингибитором подходила для изучения природы участвующих в реакции боковых цепей, она должна удовлетворять следующим критериям:

) быть специфичной, т.е. ингибитор должен блокировать только нужные группы;

) ингибировать активность фермента, и это ингибирование должно становиться полным при увеличении числа модифицированных групп;

) реагент не должен вызывать неспецифическую денатурацию белка.

Выделяют 2 группы ингибиторов: обратимого и необратимого действия. В основе подразделения лежит критерий восстановления активности фермента после диализа или сильного разведения раствора фермента с ингибитором.

По механизму действия выделяют конкурентное, неконкурентное, бесконкурентное, субстратное и аллостерическое ингибирование. [3]

Конкурентное ингибирование

Конкурентное ингибирование было открыто при изучении ингибирования, вызываемого аналогами субстрата. Это торможение ферментативной реакции, вызванное связыванием с активным центром фермента ингибитора сходного по структуре с субстратом и препятствующего образованию фермент-субстратного комплекса. При конкурентном торможении ингибитор и субстрат, будучи сходными по строению, конкурируют за активный центр фермента. С активным центром связывается то соединение молекул, которого больше.

Такие представления о механизме ингибирования были подтверждены экспериментами по кинетике реакций конкурентного ингибирования. Так, было показано, что в случае конкурентного ингибирования аналог субстрата не влияет на скорость разложения уже образовавшегося комплекса фермент-субстрат, т.е. при использовании «бесконечно большого» избытка субстрата получается одна и та же максимальная скорость как в присутствии, так и в отсутствие ингибитора. Напротив, ингибитор влияет на величину константы диссоциации и константы Михаэлиса. Из этого можно сделать вывод, что ингибитор реагирует с группами белка, участвующими тем или иным образом в связывании субстрата, следовательно, из-за взаимодействия его с этими группами прочность связывания субстрата уменьшается (т.е. уменьшается число молекул фермента, способных связывать субстрат).

Позже было показано, что кинетически конкурентное ингибирование может быть вызвано не только аналогами субстратов, но и другими реагентами, химическая структура которых абсолютно отличается от структуры субстрата. В этих случаях также предполагалось, что данный реагент взаимодействует с группой, ответственной за связывание субстрата.

Для конкурентного ингибирования теоретически могут существовать две возможности:

1)связывающие и каталитические центры фермента перекрываются; ингибитор связывается с ними, но влияет только на группы центра связывания;

2)центр связывания и каталитический центр в молекуле фермента пространственно обособлены; ингибитор взаимодействует с центром связывания.

Существуют следующие элементарные стадии реакции:

 

 

 

где I - ингибитор, а KI - константа диссоциации комплекса фермент - ингибитор.

Относительная скорость (отношение скорости ферментативной реакции, измеренной в присутствии ингибитора (vi), к максимальной скорости) равна

 

vi / V = [ES] / [E]T

 

поскольку для общей концентрации фермента справедливо

 

[E]T = [E] + [ES] + [EI]

то                             1 / vi = (Ks / V[S]) (1 + [I] / KI) + 1 / V

 

Очевидно, если [I] = KI, то наклон прямой линии становится вдвое больше, чем для зависимости 1/v0 от [S] (v0 - скорость ферментативной реакции в отсутствие ингибитора).

Тип ингибирования обычно определяют графически. Конкурентное ингибирование легче всего распознается путем построения графиков Лайнуивера - Берка (т.е. графиков в координатах 1/viи 1/[S]) при разных концентрациях ингибитора. При истинном конкурентном ингибировании получается набор прямых, отличающихся тангенсом угла наклона и пересекающих ось ординат (ось 1/vi)в одной точке. При любой концентрации ингибитора можно попользовать настолько высокую концентрацию субстрата, что активность фермента будет максимальной.

В качестве примера конкурентного ингибирования можно привести влияние различных веществ на активность сукцинатдегидрогеназы. Этот фермент входит в состав ферментной циклической системы - цикла Кребса. Его природным субстратом является сукцинат, а сходным с ним конкурентным ингибитором - оксалоацетат, промежуточный продукт того же цикла Кребса:

 


 

 

 

Аналогичным конкурентным ингибитором сукцинатдегидрогеназы является малоновая кислота, часто использующаяся в биохимических исследованиях.

На принципе конкурентного ингибирования основано действие многих фармакологических препаратов, ядохимикатов, используемых для уничтожения сельскохозяйственных вредителей, и боевых отравляющих веществ.

Например, группа антихолинэстеразных препаратов, к которым относятся производные четвертичных аммониевых оснований и фосфорорганические соединения, являются конкурентными ингибиторами фермента холинэстеразы по отношению к его субстрату ацетилхолину. Холинэстераза катализирует гидролиз ацетилхолина - медиатора холинэргических систем (нервно-мышечных синапсов, парасимпатической системы и т.д.). Антихолинэстеразные вещества конкурируют с ацетилхолином за активный центр фермента, связываются с ним и выключают каталитическую активность фермента. Такие препараты, как прозерин, физостигмин, севин, угнетают фермент обратимо, а фосфорорганические препараты типа армина, нибуфина, хлорофоса, зомана действуют необратимо, фосфорилируя каталитическую группу фермента. В результате их действия накапливается ацетилхолин в тех синапсах, где он является медиатором нервного возбуждения, т.е. происходит отравление организма накопившимся ацетилхолином. Действие обратимых ингибиторов постепенно проходит, так как чем больше накапливается ацетилхолина, тем быстрее он вытесняет ингибитор из активного центра холинэстеразы. Токсичность необратимых ингибиторов несравненно выше, поэтому их применяют для борьбы с вредителями сельского хозяйства, бытовыми насекомыми и грызунами (например, хлорофос) и как боевые отравляющие вещества (например, зарин, зоман и др.). [6]


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.023 с.