Топливные гранулированные шлаки — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Топливные гранулированные шлаки

2020-04-01 117
Топливные гранулированные шлаки 0.00 из 5.00 0 оценок
Заказать работу

 

Гранулированные шлаки представляют собой механическую смесь зерен размером 0,14-20 мм. Химический состав шлаков, может изменяться в широком диапазоне - от сверхкислых (М0<0,1) до основных (М0>1). Многие топливные шлаки характеризуются значительным количеством (20 % и более) оксидов железа, содержащихся преимущественно в закисной форме. Содержание стекловидной фазы составляет 85-98%, у основных шлаков оно может быть значительно ниже. В кристаллической фазе возможно наличие муллита, геленита, псевдоволластонита, двухкальциевого силиката и других минералов.

Химический состав гранулированных шлаков, полученных из одного и того же топлива, но с применением различных способов удаления, несколько различается. В топках топливо сжигают в условиях избытка воздуха, т. е. в слабо окислительной среде, в результате чего в кусковых шлаках образуются соединения трехвалентного железа. При жидком шлакоудалении ион Fе3+ восстанавливается до Fе2+ вследствие непосредственного взаимодействия Fе2O3 с углеродом.

Содержание кислых стеклообразующих оксидов (SiO2 + Аl2O3) в гранулированных шлаках находится обычно в пределах 70-85%. Только шлаки из угля Канско-Ачинского бассейна являются слабокислыми (М0 = 0,6-0,9), а шлаки из сланцев - основными (М0>1).

Гранулированные шлаки устойчивы к силикатному и железистому распаду, не вступают в реакцию с оксидами щелочных металлов в цементе, несмотря на наличие в них значительного количества аморфного SiO2.

Растворимый кремнезем предопределяет пуццолановый характер взаимодействия шлаковых зерен с цементным камнем. Реакционная способность повышается с увеличением количества СаО в стеклофазе и снижается при увеличении количества Fе2O3.

Непосредственное влияние на гидравлическую активность шлаков имеет их фазовый состав. Структура зерен шлака зависит от условий охлаждения. Так, шлаковые зерна, полученные при непосредственном попадании расплава в воду, т. е. при отсутствии условий кристаллизации, состоят из однородного алюможелезистосиликатного стекла. В воздушных условиях шлаковый расплав характеризуется более медленным режимом охлаждения, что способствует образованию зародышей кристаллов, вследствие чего структура шлака отличается закристаллизованностью.

Гранулированные шлаки от сжигания углей с низкокальциевой минеральной частью относятся к труднокристаллизующимся даже при относительно медленном охлаждении, содержат не более 10-15 % кристаллических компонентов.

Физико-механические характеристики шлака, его структура зависят от вида сжигаемого топлива и способа его удаления. Среди общей массы шлака можно выделить плотные и пористые зерна с различным количеством открытых и закрытых пор. Средняя плотность таких зерен может колебаться от 2,6 до 1,5 г/см3, в редких случаях встречаются зерна со средней плотностью до 1 г/см3. Истинная плотность шлака в основном 2,3-2,7 г/см3, насыпная находится в пределах 1100-1700 кг/м3.

Меньшая механическая прочность гранулированных шлаков по сравнению с отвальными объясняет их улучшенную размалываемость. На тонкое измельчение гранулируемых шлаков требуется в 1,3-1,5 раза меньше энергии, чем на измельчение отвальных шлаков.

 

Таблица 1

Содержание добавки, кг/м3 при классе бетона

  В10 150 В15 200 В20 250 В22,5 300 В25 50 >В30 400
Гранулированные, доменные и электротермофосфорные шлаки 250-300 200-250 150-200 100-150 50-100 25-50
топливные золы и гранулированные шлаки 150-250 75-225 50-150 25-100 0-50 -
Вулканические горные породы 150-250 75-225 50-150 25-100 0-50 -

 

Примечание:

Данные таблица 1 приведены для смесей марок п1 и ж1 приготовленных на основе песков средней крупности Мкрп=2

Расчёт и подбор номинального состава бетона на первом этапе принимают средний расход добавки Д1 из рекомендуемого диапазона в зависимости от класса бетона и вида добавки.

Расход воды в составе с добавкой принимают с учётом повышенной водопотребности минеральных смесей с минеральными добавками

 

В1= В0+ ∆В


 

В0 – расход воды бетонной смеси без добавки

∆В – увеличение бетонной смеси за счёт введения добавки

Таблица 2. Увеличение водопотребности бетонной смеси, приведение различных минеральных добавок

 

добавки

Расход добавки, кг/м3

Увеличение водопотребности бетонной смеси при расходе цемента, кг/м3

<200 200-300 >300
    доменные и электротермофосфорные шлаки   <100   100-200   200-300     0   0-5   5-10   0-5   5-10   10-20   5-10   10-20   20-35
    топливные золы и гранулированные топливные шлаки   <100   100-200   200-300   0   0-10   5-20   0-5   5-20   15-40   5-15   10-30   –

 


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.