Осветление и обесцвечивание воды — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Осветление и обесцвечивание воды

2020-04-01 106
Осветление и обесцвечивание воды 0.00 из 5.00 0 оценок
Заказать работу

 

Поверхностные воды, как правило, загрязнены взвешенными, коллоидными и истинно растворенными веществами органического и неорганического происхождения, обусловливающими их мутность и цветность.[10]

Высокий эффект осветления воды путем ее обработки в электролизере достигается, наряду с высокой сорбционной способностью образующейся гидроокиси, еще и за счет электрофлотационного процесса, который интенсифицируется при более высокой плотности тока.

При повышении температуры воды наблюдается незначительное улучшение процесса обесцвечивания.

Улучшение процесса обесцвечивания объясняется повышением сорбционных свойств образующейся гидроокиси железа.

Улучшения эффекта обесцвечивания можно добиться также в результате увеличения плотности тока на электродах.

Удаление из воды сине-зеленых водорослей

Сравнительные опыты по очистке воды от водорослей в период «Цветения» показали, что обработка воды, содержащей 1610 клеток водорослей в 1 мг воды, сернокислым глиноземом снижает количество клеток водорослей примерно в 3 раза, в то время как эквивалентным количеством гидроокиси железа при электрокоагуляции их количество уменьшается более чем в 20 раз.

В связи с разработкой комплексного электрохимического метода очистки воды от загрязнений изучались возможности удаления из воды водорослей, бактерий и других микроорганизмов и выбор оптимальных величин рН, температуры воды, дозы железа и плотности тока, при которых процесс удаления микроорганизмов происходит наиболее эффективно.

Обескислороживание воды

В природных водах может содержаться до 14,6 мг/л растворенного кислорода, который обусловливает коррозионную активность воды по отношению к железу. Особенно нежелательно наличие кислорода в питательной воде паровых котлов, в воде тепловых сетей и систем горячего водоснабжения, так как при высокой температуре агрессивное воздействие растворенного в воде кислорода значительно возрастает.[11]

В питательной воде паровых котлов должно содержаться не более 0,01-0,03 мг/л кислорода, в воде тепловых сетей - не более 0,1 мг/л.

Обескислороживание воды осуществляется химическими методами, основанными на введении в воду восстановителей или фильтрованием через редоксиониты и другие вещества, либо физическими методами, основанными на уменьшении растворимости кислорода в воде при ее нагреве или снижении парциального давления кислорода у поверхности воды. Электрохимическое обескислороживание воды основано на катодном восстановлении кислорода и окислении им продуктов электролиза.

Некоторое улучшение процесса обескислороживания в кислых средах можно объяснить влиянием водородной деполяризации, Интенсивное выделение пузырьков водорода способствует перемешиванию воды и уменьшению толщины диффузионного слоя в прикатодной зоне.

Исследования по влиянию температуры на процесс электрохимического обескислороживания показали, что при повышении температуры эффективность процесса резко возрастает. При 10°С остаточная концентрация кислорода в воде составляет 37,9%, а при 80° С - 3,5%. При повышении температуры снижается напряжение на электродах и уменьшается расход электроэнергии на обработку единицы объема воды. Так, при изменении температуры от 2 до 80°С затраты электроэнергии снижаются в 3 раза.

Электрохимический метод обескислороживания рекомендуется к использованию при необходимости комплексной очистки воды для технических нужд, особенно для подготовки воды в котельных небольшой производительности.

Очистка сточных вод

При электрохимической обработке сточных вод в них разрушаются, флотируются или сорбируются вредные примеси, иногда утилизируются ценные металлы и органические вещества. Электрокоагуляцией может быть достигнуто эффективное обеззараживание сточных вод, очистка их от жиров и масел, нефтепродуктов, нитропроизводных толуола, радиоактивных веществ, хрома, сульфитов, СПАВ, красителей и других загрязнений.[12]

Для очистки сточных вод предпочтительно использование стальных (железных) анодов вместо алюминиевых, которые в большинстве случаев применяются для подготовки питьевой йоды. В воду переходят ионы двухвалетного железа, которые, соединяясь с гидроксильными группами, образуют гидрат закиси железа Fe(OH)2, являющийся хорошим коагулянтом. В присутствии кислорода воздуха гидрат закиси железа окисляется до гидрата окиси Fe(OH)3


4Fe(OH)2 + 2H2O + O2 → 4Fe(OH)3 (5)

 

Хлопья Fe(OH)3 и Fe(OH)2 сорбируются на своей поверхности загрязнения и удаляются из воды отстаиванием и фильтрованием. Растворение в воде 1 г железа эквивалентно введению 2,904 г FeCl3 и 7,16 г Fe2(S04)3.

Актуальной проблемой является обезжиривание и очистка радиоактивных сточных вод, в особенности удаление из них моющих средств и активных добавок, которые в больших концентрациях входят в состав радиоактивного стока. При применении электролитического метода уменьшается солесодержание воды и достигается более глубокое извлечение моющих средств.[13]

Компактность сооружений для электролитической очистки сточных вод, экономичность в постройке и эксплуатации, и простота обслуживания позволяют рекомендовать этот метод для использования в народном хозяйстве.

Флотация

Флотация является сложным физико-химическим процессом, заключающимся в создании комплекса частица-пузырек воздуха или газа, всплывании этого комплекса и удалении образовавшегося пенного слоя. Процесс флотации широко применяют при обогащении полезных ископаемых, а также при очистке сточных вод.

В зависимости от способа получения пузырьков в воде существуют следующие способы флотационной очистки:

флотация пузырьками, образующимися путем механического дробления воздуха (механическими турбинами-импеллерами, форсунками, с помощью пористых пластин и каскадными методами);

флотация пузырьками, образующимися из пересыщенных растворов воздуха в воде (вакуумная, напорная);

электрофлотация.

Процесс образования комплекса пузырек-частица происходит в три стадии: сближение пузырька воздуха и частицы в жидкой фазе, контакт пузырька с частицей и прилипание пузырька к частице.

Прочность соединения пузырек-частица зависит от размеров пузырька и частицы, физико-химических свойств пузырька, частицы и жидкости, гидродинамических условий и других факторов. Процесс очистки стоков при флотации заключается в следующем: поток жидкости и поток воздуха (мелких пузырьков) в большинстве случаев движутся в одном направлении. Взвешенные частицы загрязнений находятся во всем объеме сточной воды и при совместном движении с пузырьками воздуха происходит агрегирование частицы с воздухом. Если пузырьки воздуха значительных размеров, то скорости воздушного пузырька и загрязненной частицы различаются так сильно, что частицы не могут закрепиться на поверхности воздушного пузырька. Кроме того, большие воздушные пузырьки при быстром движении сильно перемешивают воду, вызывая разъединение уже соединенных воздушных пузырьков и загрязненных частиц. Поэтому для нормальной работы флотатора во флотационную камеру не допускаются пузырьки более определенного размера.[14]

Вакуумная флотация

Вакуумная флотация основана на понижении давления ниже атмосферного в камере флотатора. При этом происходит выделение воздуха, растворенного в воде. При таком процессе флотации образование пузырьков воздуха происходит в спокойной среде, в результате чего улучшается агрегирование комплексов частица-пузырек и не нарушается их целостность вплоть до достижения ими поверхности жидкости.

Напорная флотация

Этот вид очистки сточных вод выполняется в две стадии: насыщение воды воздухом под давлением; выделение пузырьков воздуха соответствующего диаметра и всплытие взвешенных и эмульгированных частиц примесей вместе с пузырьками воздуха. Если флотация проводится без добавления реагентов, то такая флотация относится к физическим способам очистки сточных вод.

Флотация с подачей воздуха через пористые материалы

Для получения пузырьков воздуха небольших размеров можно использовать пористые материалы, которые должны иметь достаточное расстояние между отверстиями, чтобы не допустить срастания пузырьков воздуха над поверхностью материала. На размер пузырька большое влияние оказывает скорость истечения воздуха из отверстия. Для получения микропузырьков необходима относительно небольшая скорость истечения.

Электрофлотация

Сточная жидкость при пропускании через нее постоянного электрического тока насыщается пузырьками водорода, образующегося на катоде. Электрический ток, проходящий через сточную воду, изменяет химический состав жидкости, свойства и состояние нерастворимых примесей. В одних случаях эти изменения положительно влияют на процесс очистки стоков, в других - ими надо управлять, чтобы получить максимальный эффект очистки.

В общем, достоинствами флотации являются непрерывность процесса, широкий диапазон применения, небольшие капитальные и эксплуатационные затраты, простая аппаратура, селективность выделения примесей, по сравнению с отстаиванием большая скорость процесса, а также возможность получения шлама более низкой влажности (90-95%), высокая степень очистки (95-98%), возможность рекуперации удаляемых веществ.

Сорбция

Среди физико-химических методов очистки сточных вод от нефтепродуктов лучший эффект дает сорбция на углях.

Сорбция - это процесс поглощения вещества из окружающей среды твердым телом или жидкостью. Поглощающее тело называется сорбентом, поглощаемое - сорбатом. Различают поглощение вещества всей массой жидкого сорбента (абсорбция) и поверхностным слоем твердого или жидкого сорбента (адсорбция). Сорбция, сопровождающаяся химическим взаимодействием сорбента с поглощаемым веществом, называется хемосорбцией.

Сорбция представляет собой один из наиболее эффективных методов глубокой очистки от растворенных органических веществ сточных вод предприятий нефтехимической промышленности.

В качестве сорбентов применяют различные пористые материалы: золу, коксовую мелочь, торф, силикагели, алюмогели, активные глины и др. Эффективными сорбентами являются активированные угли различных марок. Пористость этих углей составляет 60-75%, а удельная площадь поверхности 400-900 м2/г. В зависимости от преобладающего размера пор активированные угли делятся на крупно- и мелкопористые и смешанного типа. Поры по своему размеру подразделяются на три вида: макропоры размером 0,1-2 мкм, переходные размером 0,004-0,1 мкм, микропоры - менее 0,004 мкм.

В зависимости от области применения метода сорбционной очистки, места расположения адсорберов в общем комплексе очистных сооружений, состава сточных вод, вида и крупности сорбента и др. назначают ту или иную схему сорбционной очистки и тип адсорбера. Так, перед сооружениями биологической очистки применяют насыпные фильтры с диаметром зерен сорбента 3 -5 мм или адсорбер с псевдоожиженным слоем сорбента с диаметром зерен 0,5 - 1 мм. При глубокой очистке производственных сточных вод и возврате их в систему оборотного водоснабжения применяют аппараты с мешалкой и намывные фильтры с крупностью зерен сорбента 0,1 мм и менее.

Наиболее простым является насыпной фильтр, представляющий собой колонну с неподвижным слоем сорбента, через который фильтруется сточная вода. Скорость фильтрования зависит от концентрации растворенных в сточных водах веществ и составляет 1 -6 м/ч; крупность зерен сорбента - 1,5-5 мм. Наиболее рациональное направление фильтрования жидкости - снизу вверх, так как в этом случае происходит равномерное заполнение всего сечения колонны и относительно легко вытесняются пузырьки воздуха или газов, попадающих в слой сорбента вместе со сточной водой.

В колонне слой зерен сорбента укладывают не беспровальную решетку с отверстиями диаметром 5-10 мм и шагом 10-20 мм, на которые укладывают поддерживающий слой мелкого щебня и крупного гравия высотой 400-500 мм, предохраняющий зерна сорбента от проваливания в предрешеточное пространство и обеспечивающий равномерное распределение потока жидкости по всему сечению. Сверху слой сорбента для предотвращения выноса закрывают сначала слоем гравия, затем слоем щебня и покрывают решеткой (т.е. в обратном порядке).

Химическая очистка

Окислительный метод очистки применяют для обезвреживания производственных сточных вод, содержащих токсичные примеси (цианиды, комплексные цианиды меди и цинка) или соединения, которые нецелесообразно извлекать из сточных вод, а также очищать другими методами (сероводород, сульфиды). Такие виды сточных вод встречаются в машиностроительной (цехи гальванических покрытий), горно-добывающей (обогатительные фабрики свинцо-цинковых и медных руд), нефтехимической (нефтеперерабатывающие и нефтехимические заводы), целлюлозно-бумажной (цехи варки целлюлозы) и в других отраслях промышленности.[15]

В узком смысле окисление - реакция соединения какого-либо вещества с кислородом, а в более широком - всякая химическая реакция, сущность которой состоит в отнятии электронов от атомов или ионов. В практике обезвреживание производственных сточных вод в качестве окислителей используют хлор, гипохлорит кальция и натрия, хлорную известь, диоксид хлора, озон, технический кислород и кислород воздуха.


Хлорирование

Обезвреживание сточных вод хлором или его соединениями - один из самых распространенных способов их очистки от ядовитых цианидов, а также от таких органических и неорганических соединений, как сероводород, гидросульфид, сульфид, метилмеркаптан и др.

Озонирование

Озон обладает высокой окислительной способностью и при нормальной температуре разрушает многие органические вещества, находящиеся в воде. При этом процессе возможно одновременное окисление примесей, обесцвечивание, дезодорация, обеззараживание сточной воды и насыщение ее кислородом. Преимуществом этого метода является отсутствие химических реагентов при очистке сточных вод.

Растворимость озона в воде зависит от pH и количества примесей в воде. При наличии в воде кислот и солей растворимость озона увеличивается, а при наличии щелочей - уменьшается.

Озон самопроизвольно диссоциирует на воздухе и в водном растворе, превращаясь в кислород. В водном растворе озон диссоциирует быстрее. С ростом температуры и pH скорость распада озона резко возрастает.

Озон можно получить разными методами, но наиболее экономичным является пропускание воздуха или кислорода через электрический разряд высокого напряжения (5000-25000В) в генераторе озона (озонаторе), который состоит из двух электродов, расположенных на небольшом расстоянии друг от друга.

Промышленное получение озона основано на расщеплении молекул кислорода с последующим присоединением атома кислорода к нерасщепленной молекуле под действием тихого полукоронного или коронного электрического разряда.

Для получения озона необходимо применять очищенный и осушенный воздух или кислород.

Перспективность применения озонирования как окислительного метода обусловлена также тем, что оно не приводит к увеличению солевого состава очищаемых сточных вод, не загрязняет воду продуктами реакции, а сам процесс легко поддается полной автоматизации.

Смешение очищаемой воды с озонированным воздухом может осуществляться различными способами: барботированием воды через фильтры, дырчатые (пористые) трубы, смешением с помощью эжекторов, мешалок и т.д.

Биологическая очистка

Сточные воды, прошедшие механическую и физико-химическую очистку, содержат еще достаточно большое количество растворенных и тонкодиспергированных нефтепродуктов, а также других органических загрязнений и не могут быть выпущены в водоем без дальнейшей очистки.[16]

Наиболее универсален для очистки сточных вод от органических загрязнений биологический метод. Он основан на способности микроорганизмов использовать разнообразные вещества, содержащиеся в сточных водах, в качестве источника питания в процессе их жизнедеятельности. Задачей биологической очистки является превращение органических загрязнений в безвредные продукты окисления - H2O, CO2, NO3-, SO42- и др. Процесс биохимического разрушения органических загрязнений в очистных сооружениях происходит под воздействием комплекса бактерий и простейших микроорганизмов, развивающихся в данном сооружении.

Для правильного использования микроорганизмов при биологической очистке необходимо знать физиологию микроорганизмов, т.е. физиологию процесса питания, дыхания, роста и их развития.

Всякий живой организм отличается от неживого наличием обмена веществ, в процессе которого происходит усвоение питательных веществ и выделение продуктов жизнедеятельности.

Основными процессами обмена веществ являются питание и дыхание.

Биохимическая очистка производственных сточных вод нефтеперерабатывающих заводов производится в аэрофильтрах (биофильтры), аэротенках и биологических прудах.

Биофильтры представляют собой железобетонные или кирпичные резервуары, заполненные фильтрующим материалом, который укладывается на дырчатое днище и орошается сточными водами. Для загрузки биофильтров применяют шлак, щебень, пластмассу и др. Очистка сточных вод в биофильтрах происходит под воздействием микроорганизмов, заселяющих поверхность загрузки и образующих биологическую пленку. При контакте сточной жидкости с этой пленкой микроорганизмы извлекают из воды органические вещества, в результате чего сточная вода очищается.

Аэротенки представляют собой железобетонные резервуары длиной 30-100 м и более, шириной 3-10 м и глубиной 3-5 м. Очистка сточных вод в аэротенках происходит под воздействием скоплений микроорганизмов (активного ила). Для нормальной их жизнедеятельности в аэротенки подают воздух и питательные вещества.

Преимущества биологического метода очистки - возможность удалять из сточных вод разнообразные органические соединения, в том числе токсичные, простота конструкции аппаратуры, относительно невысокая эксплуатационная стоимость. К недостаткам следует отнести высокие капитальные затраты, необходимость строгого соблюдения технологического режима очистки, токсичное действие на микроорганизмы некоторых органических соединений и необходимость разбавления сточных вод в случае высокой концентрации примесей.

Таким образом, использование сорбционных свойств гидроокисей металлов, получаемых при электролизе, является высокоэффективным, а иногда единственным способом извлечения из воды загрязнений. Вместе с этим возможность осуществления процесса очистки воды в компактных и автоматически действующих установках делают применение метода электрокоагуляции особенно перспективным.


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.037 с.