Дезактивация активных форм кислорода — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Дезактивация активных форм кислорода

2020-04-01 210
Дезактивация активных форм кислорода 0.00 из 5.00 0 оценок
Заказать работу

Антоцианы снижают окислительную нагрузку на растение, выступая в качестве фильтра света желто-зеленой области спектра, так как большая часть свободных радикалов образуется в результате возбуждения хлорофилла. Растворы антоцианов нейтрализуют почти все виды радикальных форм кислорода и азота в четыре раза эффективнее, чем аскорбат и α-токоферол. Недавние экспериментальные данные показали, что этот антиокислительный потенциал действительно используется клетками растений. У Arabidopsis, например, сильное световое излучение и низкие температуры вызвали более сильное перекисное окисление липидов в мутантах, не содержащих антоцианы, чем у диких (родительских) форм растений. Подобным образом под действием γ-излучения только растения Arabidopsis, содержащие и антоцианы, и аскорбиновую кислоту сохраняли нормальную способность к росту и цветению.

Микроскопические исследования поврежденной кожицы листа показали, что красно-пигментированные клетки дезактивируют перекись водорода значительно быстрее зеленых клеток. Однако остается не ясным, являются скавенджерами красные таутомерные антоцианы, находящиеся в вакуоли клетки, или бесцветные таутомеры, содержащиеся в цитозоле. Обе формы обладают внушительным антиокислительным потенциалом. В системе in vitro с бесцветным таутомером цианидин 3 - (6-малонил) - глюкозида была показана способность данного соединения к дезактивации до 17% супероксид-радикалов, синтезированных освещенными хлоропластами. Учитывая их близость в клетке к источникам синтеза супероксиданион радикала, вероятно, что именно цитозольные антоцианы, а не расположенные в вакуоли, обеспечивают больший вклад в антиокислительную защиту.

Степень вклада антоцианов в антиоксидантную систему растения, среди других низкомолекулярных антиоксидантов у разных видов растений отличается. Например, в красных листьях у молодых растений Elatostema rugosum антоцианы являются преобладающим фенольным соединением. Напротив, красно- и зеленоокрашенные листья кроны Quintinia serrata содержат в качестве основного низкомолекулярного антиоксиданта гидроксикоричные кислоты. Таким образом, во многих случаях высокий уровень биосинтеза антоцианов бывает желательной, но не является обязательной предпосылкой для защиты от окислительного стресса.

Повышение устойчивости к стрессу

Стимулирование синтеза антоцианов листьев связано с влиянием многих различных стрессовых факторов окружающей среды. Антоцианы, например, связаны с повышением устойчивости к охлаждению и замораживанию, к загрязнению тяжелыми металлами, к засухе. Chalker-Scott приписывает главную роль антоцианам в качестве осморегуляторов клетки растения, поскольку большая часть субоптимальных условий окружающей среды включают прямой или косвенный водный стрессы. Другие исследователи предполагают, что фотопротекторные [12] или антиокислительные свойства антоцианов являются главными в ответе растения на стресс.

Важной функцией антоцианов является их способность придавать цвет растениям или растительным продуктам, в которых они присутствуют. Они играют определенную роль в привлечении животных для опыления и переноса семян, следовательно, они имеют большое значение в развитии взаимоотношений растение-животное. Антоцианы наряду с флавоноидами могут повышать устойчивость растений к атакам насекомых. Однако окончательная роль антоцианов в растениях до сих пор неясна.

Исходя из всего рассмотренного, можно сделать вывод, что функции антоцианов состоят, прежде всего, в разнообразной, универсальной и эффективной защите растений в стрессовых ситуациях.

Распространение в природе

 

Широко распространенными в растительном мире красящими веществами являются и антоцианы. В отличие от хлорофилла они не связаны внутри клетки с пластидными образованиями, а чаще всего растворены в клеточном соке, иногда встречаются в виде мелких кристаллов. Антоцианы легко извлечь из любых синих или красных частей растения. Если, к примеру, прокипятить нарезанный корнеплод столовой свеклы или листья краснокочанной капусты в небольшом количестве воды, то скоро она окрасится от антоциана в лиловый или грязно-красный цвет. Но достаточно к этому раствору прибавить несколько капель уксусной, лимонной, щавелевой или любой другой кислоты, как он сразу же примет интенсивную красную окраску. Присутствие антоцианов в клеточном соке растений придает цветкам колокольчиков синий цвет, фиалок - фиолетовый, незабудок - небесно-голубой, тюльпанов, пионов, роз, георгинов - красный, а цветкам гвоздик, флоксов, гладиолусов - розовый. Почему же этот краситель является таким многоликим? Дело в том, что антоциан в зависимости от того, в какой среде он находится (в кислой, нейтральной или щелочной), способен быстро изменять свой оттенок. Соединения антоциана с кислотами имеют красный или розовый цвет, в нейтральной среде - фиолетовый, а в щелочной - синий.

Поэтому в соцветиях медуницы лекарственной можно одновременно найти полураспустившиеся цветки с розоватым венчиком, расцветшие - пурпуровой окраски и уже отцветающие - синего цвета. Это обусловлено тем, что в бутонах клеточный сок имеет кислую реакцию, которая по мере распускания цветков переходит в нейтральную, а потом и в щелочную. Подобные изменения окраски лепестков наблюдаются и у цветков жасмина комнатного, незабудки болотной, синюхи голубой, льна обыкновенного, цикория обыкновенного и сочевичника весеннего. Возможно, такие «возрастные» явления в цветке частично связаны и с процессом его оплодотворения. Имеются сведения, что насекомые-опылители у медуницы посещают только расцветшие розовые и пурпурные цветки. Но только ли окраска венчика при этом служит для них ориентиром?
Разнообразие окраски цветков зависит от числа гидроксильных групп в молекулах антоцианов: с их увеличением окраска становится более синей (из-за наличия дельфинидина). При метилировании гидроксилов образуется пигмент мальвидин, придающий лепесткам красный цвет. Расцветка венчиков обусловливается и соединениями антоцианов с ионами различных металлов. Так, например, соли магния и кальция способствуют преобладанию синей окраски, а соли калия - пурпурной. Определенное разнообразие оттенков вносит и дополнительное присутствие желтых пигментов (халконов, флавонолов, флавонов, ауронов и т.п.).

Естественные красители содержатся не только в цветках, но и в других частях растений, играя многостороннюю роль. Взять хотя бы не бросающуюся в глаза окраску клубней картофеля. У клубней картофеля различная окраска кожуры, глазков, проростков и мякоти также зависит от содержания в них фенольных соединений, иначе называемых биофлавоноидами. Они имеют разнообразную гамму красок: белую, желтую, розовую, красную, синюю, темно-фиолетовую и даже черную. Картофель с черной окраской кожуры клубней растет на его родине на острове Чилоэ. Различная окраска картофельной кожуры и мякоти зависит от содержащихся в них следующих биофлавоноидов: белая - от бесцветных лейкоантоцианов или катехинов, желтая - от флавонов и флавоноидов, красная и фиолетовая - от антоцианов. Группа антоцианов наиболее многочисленна, насчитывает около 10 видов. В нее входят и дающие пурпурный и розовый цвета пионидин, пеларгонидин и мальвидин, и окрашивающие в синий цвет цианидин и дельфинидин, и бесцветный пигмент петунидин. Установлено, что окрашенные клубни картофеля, как правило, богаче необходимыми для нашего организма веществами. Так, например, клубни с желтой мякотью имеют повышенное содержание жира, каротиноидов, рибофлавина и комплекса флавоноидов.

За счет способности антоцианов менять свою окраску можно наблюдать изменение цвета клубней картофеля в зависимости от состояния погоды, интенсивности освещения, реакции почвенной среды, применения минеральных удобрений и ядохимикатов. При выращивании картофеля на торфяных почвах, например, клубни часто имеют синеватый оттенок, при внесении фосфорного удобрения они бывают белыми, сульфат калия может придать им розовый цвет. Окраска клубней нередко меняется и под влиянием ядохимикатов, содержащих медь, железо, серу, фосфор и другие элементы.

Сказочная осенняя окраска листьев с оранжевыми, красно-бурыми и красными оттенками тоже зависит от содержания в их клеточном соке антоцианов. Наиболее активному процессу их образования в этот период способствуют понижение температуры, яркое освещение и задержка по этим причинам в листве питательных веществ, особенно сахаров.

Искусственно ускорить образование антоцианов в листьях калины обыкновенной, черемухи обыкновенной, осины, бересклета бородавчатого или клена платановидного можно следующим путем. Весной на одной из их ветвей посередине ее длины снимают кольцо коры шириной в 2-2,5 см. Это приведет к усиленному накоплению углеводов в изолированной верхней части ветви и вызовет здесь более раннее и интенсивное покраснение листьев, чем ниже кольца или на неповрежденных ветвях.
Полагаем, что если уважаемый читатель пожелает повторить этот опыт, то постарается выполнить его с надлежащей аккуратностью и бережным отношением к живому дереву - нашему верному другу.

Антоцианы в клетках растений выполняют не только роль вещества, придающего их тканям яркую привлекательную окраску. Оказывается, что эти пигменты, появляющиеся в листьях и стеблях при воздействии пониженных температур, в ранневесенний и осенний периоды служат своего рода «ловушкой» солнечных лучей, избирательно работающим фильтром. В молодых побегах и листьях бузины красной, пырея ползучего, ржи озимой, лисохвоста лугового, мятлика лугового и некоторых других растений антоцианы ранней весной превращают световую энергию в тепловую и защищают их от холода.

Наблюдения свидетельствуют также о том, что фиолетовая окраска семян, листьев и стеблей у растений является индикатором на содержание в них легкоферментируемых углеводов - сахарозы, фруктозы и глюкозы, в значительной степени обусловливающих холодостойкость растений. По этому характерному показателю (тесту) в перспективе можно будет оперативно вести предварительный отбор на морозоустойчивость и повышенное содержание сахаров, что особенно необходимо при выведении новых сортов многолетних кормовых трав.

Следовательно, багряные оттенки, в которые окрашиваются многие наши деревья перед листопадом, не играют какой-либо особой физиологической роли, а являются лишь показателем затухания процесса фотосинтеза, предвестником наступления периода зимнего покоя растений.
Откуда же осенью появляются антоциан и ксантофилл? Оказывается, что в зеленых листьях деревьев с самого начала их жизни одновременно содержатся и хлорофилл, и антоциан (или ксантофилл). Однако антоциан и ксантофилл имеют менее интенсивную плотность окраски, поэтому они становятся заметными только после того, как под воздействием определенных условий окружающей среды произойдет разрушение зерен хлорофилла. В ноябре - декабре, когда образование хлорофилла сдерживается недостатком солнечного света и его неполным спектром, у комнатных роз молодые побеги и распускающиеся листья имеют ярко-красный цвет. При ярком солнечном освещении они сразу стали бы зелеными.

У некоторых растений изменение зеленой окраски листьев на красную носит обратимый характер. Наглядным примером этого является поведение многих видов алоэ, культивируемых в комнатных условиях. Зимой и ранней весной, пока солнечный свет еще сравнительно слаб, они окрашены в зеленый цвет. Но если эти растения в июне или июле выставить на яркое солнечное освещение, их листья станут красно-бурыми. Перенесение же растений в затененное место снова обеспечит быстрое возвращение листьям зеленой окраски.

Желтая окраска цветков происходит от содержащихся в них флавонов (каротина, ксантофилла и антохлора), которые в соединении со щелочами дают довольно широкий спектр оттенков от ярко-оранжевого до бледно-желтого.

Среди многообразия красок в растительном мире довольно значительное место занимает белый цвет. Но для того чтобы его создать, обычно не нужно никакого красящего вещества. Он обусловлен наличием воздуха в межклеточных пространствах растительных тканей, который полностью отражает свет, благодаря чему лепестки цветка кажутся белыми. Это можно наблюдать на примере цветущих растений нивяника обыкновенного, кувшинки белой, ландыша майского и др. За счет плотного опушения белую окраску имеют и растения эдельвейса альпийского, сушеницы топяной, жабника полевого, мать-и-мачехи. Содержащийся в омертвевших волосках воздух также в результате отражения света делает их опушенную поверхность белой. А белая окраска березовой коры, придающая в любое время года стволам березы нарядный вид, обусловливается наполняющими клетки перидермы снежно-белыми нитевидными кристаллами бетулина («березовой камфоры») [13].

 

Применение

 

Антоцианы рассматривают как вторичные метаболиты и сильные антиоксиданты. Богаты антоцианами такие растения, как, например, черника, клюква, малина, ежевика, вишня, баклажаны.

Накопленный к настоящему времени багаж знаний об антоциановых соединениях открыл неисчерпаемые возможности для создания декоративных растений с необычной окраской, а также культурных видов растений с повышенным содержанием антоциановых пигментов.

Сейчас во всем мире ведется множество исследований по изучению действия антоцианов. Так, например, недавние исследования в США показали что употребление антоцианов в пищу помогает сократить риск поражения раком пищевода и прямой кишки. Другие исследования говорят, что антоцианы способствуют снижению воспалительных процессов в организме.

Благодаря выраженному антиоксидантному и сосудопротекторному действию, антоцианы представляют особый интерес для офтальмологов [14]. В медицине широко применяются антоцианы черники (в составе экстракта черники).

В пищевой промышленности антоцианы в виде добавки Е163 используются в качестве природных красителей. Добавка Е163 применяется в производстве кондитерских изделий, напитков, йогуртов и других пищевых продуктов. Краситель Е163 входит в список добавок, одобренных для применения в пищевой промышленности в России, Украине, странах Европы и других странах мира. Добавка Е163 (Антоцианы) имеет натуральное происхождение и нулевой уровень опасности (безопасна для здоровья). [15]

Кроме пищевой промышленности пищевая добавка Е163 (антоцианы) используется:

· в медицине (в качестве антиоксидантов и добавок, препятствующих и снижающих темпы развитие раковых заболеваний);

·   в косметике (антоцианы обладают стабилизирующим эффектом и являются коллагенами);

·   в технике (в качестве краски для органических солнечных батарей из-за способности антоцианов поглощать свет и преобразовывать его в электроны).

 


Список источников

 

1. Wheldale, M. The anthocyanin pigments of plants. - Cambridge University Press, 1916. - 320 pp.;

2. Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70, 1-9;

3. Карабанов, И.А. Флавоноиды в мире растений. - Минск: Ураджай, 1981. - с. 80;

4. Харламова, О.А. Натуральные пищевые красители / О.А. Харламова, Б.В. Кафка., - М.: Пищевая промышленность (Качество и ассортимент), 1979, - 191 с.

5. Andersen, O.M., Jordheim M. The anthocyanins. // Andersen O.M., Markham K.R. (Eds.). Flavonoids: chemistry, biochemistry and applications. - Boca Raton, FL: CRC Press, 2006. - P. 452-471;

6. Макаревич, А.М. Функции и свойства антоцианов растительного сырья / А.М. Макаревич, А.Г. Шутова, Е.В. Спиридович, В.Н. Решетников // Труды БГУ, 2010. - т. 4, выпуск 2. - С. 1 - 11;

7. Mol J., Grotewold E., Koes R. (1998). How genes paint flowers and seeds. Trends Plant Sci. 3, 212-217;

8. Marrs K.A., Alfenito M.R., Lloyd A.M., Walbot V. (1995). A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375, 397-400;

9. Pascual-Teresa, S. Anthocyanins: from plant to health / S. de Pascual-Teresa, M.T. Sanchez-Ballesta // Phytochemistry Reviews. - 2008. - Vol. 7 - P. 281-299.

10. Jaakola, L. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves / L. Jaakola [et al.] // Planta. - 2004. - Vol. 218 - P. 721-728

11. Tanaka, Y. Flower colour and cytochromes P450 / Y. Tanaka // Phytochemistry Reviews. - 2006. - Vol. 5, №2/3. - Р. 283-291.

12. Рудаков, О.Б. Фракционный состав антоциановых красителей из растительных экстрактов и контроль над ними методом ВЭЖХ / О.Б. Рудаков [и др.] // Вестник ВГУ Серия: Химия. Биологя. Фармация. - 2004. - №1. - С. 85-93

13. Антоцианы - красящие вещества в клетках растений. Материалы с сайта Удивительный мир растений - свободной энциклопедии URL: http://www.valleyflora.ru/7-1.html.

14. Ставицкая Т.В. Применение экстракта черники в офтальмологии // Клиническая офтальмология. - 2002. - №2. - C. 86-87

15. Е163 - Антоцианы [Электронный ресурс] / Электрон. дан. - [М.]. 2010-2013., URL: http://dobavkam.net/additives/e163 (Дата обращения: 04.05.2013)


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.042 с.