Особенности управления для классов систем (линейные – нелинейные, непрерывные – дискретные, с сосредоточенными – с распределенными параметрами, детерминированные – стохастические). — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Особенности управления для классов систем (линейные – нелинейные, непрерывные – дискретные, с сосредоточенными – с распределенными параметрами, детерминированные – стохастические).

2019-11-11 297
Особенности управления для классов систем (линейные – нелинейные, непрерывные – дискретные, с сосредоточенными – с распределенными параметрами, детерминированные – стохастические). 0.00 из 5.00 0 оценок
Заказать работу

 

 

Нелинейные системы

Различают статические и динамические нелинейности. Первые описываются нелинейными алгебраическими уравнениями, а вторые представляются в виде нелинейных дифференциальных уравнений.

Общий метод составления уравнений для нелинейных систем состоит в следующем. Сначала по правилам §3.1 производится линеаризация уравнений всех звеньев системы, для которых это допустимо, кроме существенно нелинейных звеньев (чате всего одпого-двух). Затем составляются уравнения этих последних звеньев со всеми допустимыми упрощениями их характеристик.

В результате получается система линейных уравнений, к которым добавляется одно-два (иногда более) нелинейных. В соответствии с этим обобщенную структурную схему любой нелинейной системы в случае одного нелинейного звена можно представить в виде рис. 16.1, а, где линейная часть может иметь структуру любой сложности (с обратными связями и т. п„ как, например, на рис. 16.1, били в). В случае двух нелинейных

звеньев могут быть разные комбинации, в зависимости от того, в какие цепи системы они холят

Непрерывные

Если в ходе работы данной системы структуры связи не меняются, то такая система имеет название непрерывной. Соответственно сигналы на выходе ее тоже будут непрерывными и представлять собой функцию входящего воздействия и времени. Между выходными и входными элементами такой системы будет существовать связь, которая не будет прерываться во времени.

Дискретные системы автоматического управления можно классифицировать по различным признакам. В зависимости от характера задающего воздействия дискретные САУ можно подразделить на: системы стабилизации, предназначенные для поддержания заданного значения выходной координаты, определяемого постоянным задающим воздействием; системы программного управления, воспроизводящие задающее воздействие, закон изменения которого во времени заранее известен, и следящие системы – их задающее воздействие представляет собой неизвестную функцию времени.

По принципу управления различают разомкнутые, замкнутые и комбинированные дискретные системы управления, когда для целей управления наряду со значениями выходных координат используют измеренные значения задающих и возмущающих воздействий.

Дискретные системы автоматического управления различают по виду квантования и модуляции сигналов. Различают три способа квантования сигналов: по времени; по уровню; смешанное по времени и уровню.

 
 


Квантование по времени осуществляется в импульсных системах, где из непрерывного сигнала выделяются значения дискретных сигналов через равные промежутки времени (рис. 2.1).

 

 

Квантование по уровню используется в релейных системах, где из непрерывного сигнала выделяются значения дискретных сигналов при достижении величины непрерывного сигнала равноотстоящих уровней (рис. 2.2).

Смешанное квантование происходит в цифровых автоматических системах (ЦАС), где преобразование непрерывного сигнала в дискретные проводится через равные промежутки времени , со значениями достигнутых равноотстоящих уровней (рис. 2.3, с отсечением дробной части).

По дискретным значениям исходного

или преобразованного сигнала формируются

 
 


импульсы определенной формы: прямоугольные, трапецеидальные, треугольные и т.д. В системах автоматического управления обычно используются прямоугольные импульсы, которые можно охарактеризовать следующими параметрами (рис.2.4): – амплитуда; – ширина импульса; – период повторения импульсов, – скважность.

В зависимости от того, какой из параметров прямоугольного импульса подвергается изменению в функции от величины непрерывного сигнала в дискретный момент времени, различают три вида импульсной модуляции: амплитудно-импульсную модуляцию (АИМ) при var, const (рис. 2.5); широтно-импульсную модуляцию (ШИМ) при const, var (рис. 2.6); время - импульсную модуляцию (ВИМ) при const, = var, = const: за счет изменения фазы – фазоимпульсную модуляцию (ФИМ); за счет изменения частоты – частотно-импульсную модуляцию (ЧИМ).

В отличие от рассмотренных выше типов импульсных систем с мгновенным временем съема сигнала (модуляцией I рода) существуют системы с конечным временем съема сигнала (модуляцией II рода). Такой вид амплитудно-импульсной модуляции может быть получен при использовании периодически замыкаемого ключа, представленного на рис.2.7. Здесь на выходе ключа через

 
 


равные промежутки времени вырабатываются импульсы, амплитуда которых изменяется в зависимости от величины входного непрерывного сигнала . Импульсные системы с амплитудно-импульсной модуляцией, представленной на рис.2.5 и рис.2.7, называются импульсными системами I-го и II-го рода соответственно.

Достоинством дискретных систем является: возможность управления

 

большими мощностями с высокой точностью; разделение во времени информационных сигналов при многоканальной передаче; возможность получения высокой точности и помехозащищенности за счет цифрового представления непрерывных сигналов; построение сложных законов управления при использовании ЦВМ в контуре управления. К недостаткам относится потеря информации о непрерывном сигнале в результате его квантования по времени или уровню, которая отражается на динамике системы.

В качестве примера на рис. 2.8 приведена функциональная схема одномерной ЦАС, которая включает в себя непрерывную часть системы, состоящую из объекта управления (ОУ), датчиков (Д), приводов исполнительных органов (ИО), и дискретную часть, реализованную в управляющей ЦВМ (УЦВМ). УЦВМ содержит преобразователи непрерывной (аналоговой) величины в код (АЦП), который поступает в ЦВМ для выработки управляющего сигнала. Цифровой сигнал с выхода ЦВМ проходит через преобразователь кода в непрерывную величину (ЦАП), который затем в виде импульсов поступает на непрерывную часть. Дискретность ввода и вывода информации в УЦВМ иллюстрируют импульсные элементы (ИЭ), работающие с периодом дискретности .

с сосредоточенными – с распределенными параметрами


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.006 с.