Артериальный пульс, происхождение. Методы изучения пульса. — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Артериальный пульс, происхождение. Методы изучения пульса.

2019-10-25 184
Артериальный пульс, происхождение. Методы изучения пульса. 0.00 из 5.00 0 оценок
Заказать работу

Артериальным пульсом называют ритмические колебания стенки артерии, обусловленные повышением давления в период сис­толы. Пульсацию артерий можно легко обнаружить прикосновением к любой доступной ощупыванию артерии: лучевой (a. radialis), височ­ной (a. temporalis), наружной артерии стопы (a. dorsalis pedis) и др.

 

Пульсовая волна, или колебательное изменения диаметра или объема артериальных сосудов, обусловлена волной повышения дав­ления, возникающей в аорте в момент изгнания крови из желудоч­ков. В это время давление в аорте резко повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим рас­тяжением колебания сосудистой стенки с определенной скоростью распространяются от аорты до артериол и капилляров, где пульсовая волна гаснет.

 

Скорость распространения пульсовой волны не зависит от скорости движения крови. Максимальная линейная скорость течения крови по артериям не превышает 0,3—0,5 м/с, а скорость распространений пульсовой волны у людей молодого и среднего возраста при нормаль­ном артериальном давлении и нормальной эластичности сосудов равна в аорте 5,5—8,0 м/с, а в периферических артериях — 6,0—9,5 м/с. С возрастом по мере понижения эластичности сосудов скорость рас­пространения пульсовой волны, особенно в аорте, увеличивается.

Для детального анализа отдельного пульсового колебания произ­водят его графическую регистрацию при помощи специальных прибо­ров — сфигмографов. В настоящее время для исследования пульса ис­пользуют датчики, преобразующие механические колебания сосуди­стой стенки в электрические изменения, которые и регистрируют.

 

В пульсовой кривой (сфигмограмме) аорты и крупных ар­терий различают две основные части — подъем и спад. Подъем кривой — анакрота — возникает вследствие повышения АД и вызванного этим растяжения, которому подвергаются стенки артерий под влиянием крови, выброшенной из сердца в начале фазы изгна­ния. В конце систолы желудочка, когда давление в нем начинает падать, происходит спад пульсовой кривой — катакрота. В тот момент, когда желудочек начинает расслабляться и давление в его полости становится ниже, чем в аорте, кровь, выброшенная в ар­териальную систему, устремляется назад к желудочку; давление в артериях резко падает и на пульсовой кривой крупных артерий появляется глубокая выемка — инцизура. Движение крови обратно к сердцу встречает препятствие, так как полулунные клапаны под влиянием обратного тока крови закрываются и препятствуют по­ступлению ее в сердце. Волна крови отражается от клапанов и создает вторичную волну повышения давления, вызывающую вновь растяжение артериальных стенок. В результате на сфигмограмме появляется вторичный, или дикротический, подъем. Формы кривой пульса аорты и отходящих непосредственно от нее крупных сосудов, так называемого центрального пульса, и кривой пульса перифери­ческих артерий несколько отличаются

 

Исследование пульса, как пальпаторное, так и инструментальное, посредством регистрации сфигмограммы дает ценную информацию о функционировании сердечно-сосудистой системы. Это исследование позволяет оценить как сам факт наличия биений сердца, так и частоту его сокращений, ритм (ритмичный или аритмичный пульс). Колебания ритма могут иметь и физиологический характер. Так, «дыхательная аритмия», проявляющаяся в увеличении частоты пуль­са на вдохе и уменьшении при выдохе, обычно выражена у молодых людей. Напряжение (твердый или мягкий пульс) определяют по величине усилия, которое необходимо приложить для того, чтобы пульс в дистальном участке артерии исчез. Напряжение пульса в определенной мере отображает величину среднего АД.

 

Объемная скорость кровотока

 

Как уже указывалось, различают линейную и объемную скорость тока крови, которая зависит от развития сосудистой сети в данном органе и от интенсивности его деятельности.

 

При работе органов в них происходит расширение сосудов и, следовательно, уменьшается сопротивление. Объемная скорость тока крови в сосудах работающего органа увеличивается.

 

Для измерения объемной и линейной скорости кровотока в со­судах предложено несколько методов. Один из современных мето­дов — ультразвуковой: к артерии на небольшом расстоянии друг от друга прикладывают две маленькие пьезоэлектрические пластин­ки, которые способны преобразовывать механические колебания в электрические и обратно. На первую пластинку подают электриче­ское напряжение высокой частоты. Оно преобразуется в ультразву­ковые колебания, которые передаются с кровью на вторую пластинку, воспринимаются ею и преобразуются в высокочастотные элек­трические колебания. Определив, как быстро распространяются уль­тразвуковые колебания по току крови от первой пластинки ко второй и в обратном направлении, т. е. против тока крови, можно рассчитать скорость кровотока. Чем быстрее ток крови, тем быстрее будут распространяться ультразвуковые колебания в одном направлении и медленнее — в противоположном.

 

Достаточно широкое распространение получил метод электро­магнитной флоурометрии. Он основан на принципе электромаг­нитной индукции. Сосуд располагают между полюсами подковооб­разного магнита. Кровь, являясь проводящей средой, двигаясь вдоль сосуда, пересекает магнитное поле и создает ЭДС, которая направ­лена перпендикулярно магнитному полю и движению крови. Вели­чина ЭДС пропорциональна напряженности поля и скорости дви­жения в нем крови. Воспринимает ЭДС датчик, выполненный в виде незамкнутого кольца, надеваемого на сосуд. Измеряя ЭДС, определяют скорость движения крови.

 

Объемную скорость кровотока у человека в конечности возможно определить посредством плетизмографии. Методика состоит в ре­гистрации изменений объема органа или части тела, зависящих от их кровенаполнения, т. е. от разности между притоком крови по артериям и оттоком ее по венам. При плетизмографии конечность или ее часть заключают в жесткий герметический сосуд, соединен­ный с манометром для измерения малых колебаний давления. В слу­чае изменения кровенаполнения конечности изменяется ее объем, что вызывает увеличение или уменьшение давления в сосуде, в который помещена конечность; давление регистрируется манометром и записывается в виде кривой — плетизмограммы. Для определения объемной скорости кровотока в конечности на несколько секунд сжимают вены и прерывают венозный отток. Поскольку приток крови по артериям продолжается, а венозного оттока нет, увеличение объема конечности соответствует количеству притекающей крови. Такая методика получила название окклюзионной (окклюзия — закупорка, зажатие) плетизмографии.

 31. Нервная регуляция тонуса кровеносных сосудов. Сосудосуживающие и сосудорасширяющие нервы.

Сужение артерий и артериол, снабженных преимущественно сим­патическими нервами (вазоконстрикция) было впервые обнаружено Вальтером (1842) в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика. Классический опыт Бернара состоит в том, что перерезка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющееся покраснением и потеплением уха оперированной стороны. Если раздражать симпатический нерв на шее, то ухо на стороне раздражаемого нерва бледнеет вследствие сужения его артерий и артериол, а температура понижается.   Главными сосудосуживающими нервами органов брюшной поло­сти являются симпатические волокна, проходящие в составе внут­ренностного нерва (п. splanchnicus). После перерезки этих нервов кровоток через сосуды брюшной полости, лишенной сосудосужива­ющей симпатической иннервации, резко увеличивается вследствие расширения артерий и артериол. При раздражении п. splanchnicus сосуды желудка и тонкой кишки суживаются.   Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентициальной оболочке). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влияни­ем симпатических нервов.   Чтобы восстановить нормальный уровень артериального тонуса после перерезки симпатических нервов, достаточно раздражать их периферические отрезки электрическими стимулами частотой 1—2 в секунду. Увеличение частоты стимуляции может вызвать сужение артериальных сосудов.   Сосудорасширяющие эффекты (вазодилатация) впервые обна­ружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу нервной системы. Например, раздра­жение барабанной струны (chorda timpani) вызывает расширение сосудов подчелюстной железы и языка, п. cavernosi penis — расши­рение сосудов пещеристых тел полового члена.   В некоторых органах, например в скелетной мускулатуре, рас­ширение артерий и артериол происходит при раздражении симпа­тических нервов, в составе которых имеются, кроме вазоконстрикторов, и вазодилататоры. При этом активация α-адренорецепторов приводит к сжатию (констрикции) сосудов. Активация β-адренорецепторов, наоборот, вызывает вазодилатацию. Следует заметить, что β-адренорецепторы обнаружены не во всех органах.   Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувст­вительные) волокна.   Эти факты, обнаруженные в 70-х годах прошлого столетия, вызвали среди физиологов много споров. Согласно теории Бейлиса и Л. А. Орбели, одни и те же заднекорешковые волокна передают импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному сосуду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна, как и все остальные нервные волокна, обладают двусторонней про­водимостью.   Согласно другой точке зрения, расширение сосудов кожи при раз­дражении задних корешков происходит вследствие того, что в рецепторных нервных окончаниях образуются ацетилхолин и гистамин, ко­торые диффундируют по тканям и расширяют близлежащие сосуды.

32. Гуморальная регуляция просвета сосудов. Сосудодвигательный центр, его локализация и значение.

Сосудодвигательный центр

 

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр — находится в продолго­ватом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перере­зать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт.ст. От­сюда следует, что сосудодвигательный центр локализован в продолго­ватом мозге и находится в состоянии тонической активности, т. е. дли­тельного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.

 

Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.

 

Считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.

 

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегета­тивной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.

 

Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

 

Гуморальные влияния на сосуды

 

Одни гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов.

 

Сосудосуживающие вещества. К ним относятся гормо­ны мозгового вещества надпочечников — адреналин и норадреналин, а также задней доли гипофиза — вазопрессин.

 

Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует пре­имущественно на артериолы и капилляры.

 

Адреналин, норадреналин и вазопрессин оказывают влияние на сосуды в очень малых концентрациях. Так, сужение сосудов у теплокровных животных происходит при концентрации адреналина к крови 1*10 7 г/мл. Сосудосуживающий эффект этих веществ обусловливает резкое повышение АД

 

К числу гуморальных сосудосуживающих факторов относится серотонин (5-гидроокситриптамин), продуцируемый в слизистой оболочке кишечника и в некоторых участках головного мозга. Се­ротонин образуется также при распаде тромбоцитов. Физиологиче­ское значение серотонина в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного со­суда. Во второй фазе свертывания крови, развивающейся после образования тромба, серотонин расширяет сосуды.

 

Особый сосудосуживающий фактор — ренин, образуется в почках, причем тем в большем количестве, чем ниже кровоснабжение почек. По этой причине после частичного сдавливания почечных артерий у животных возникает стойкое повышение артериального давления, обусловленное сужением артериол. Ренин представляет собой протеолитический фермент. Сам ренин не вызывает сужения сосудов, но, поступая в кровь, расщепляет α2-глобулин плазмы — ангиотензиноген и превращает его в относительно малоактивный дека-пептид — ангиотензин I. Последний под влиянием фермента дипептидкарбоксипептидазы превращается в очень активное сосудо­суживающее вещество ангиотензин II. Ангиотензин II быстро разрушается в капиллярах ангиотензиназой.

 

В условиях нормального кровоснабжения почек образуется срав­нительно небольшое количество ренина. В большом количестве он продуцируется при падении уровня давления крови по всей сосудистой системе. Если понизить давление крови у собаки путем кровопускания, то почки выделят в кровь повышенное количество ренина, что будет способствовать нормализации АД.

 

Открытие ренина и механизма его сосудосуживающего действия представляет большой клинический интерес: оно объяснило причину высокого АД, сопутствующего некоторым заболеваниям почек (гипертензия почечного происхождения).

 

 

Сосудорасширяющие вещества. В почках образуется также и сосудорасширяющее вещество, названное медуллином (вы­рабатывается в мозговом слое почки). Это вещество представляет собой липид.

 

В настоящее время известно образование во многих тканях тела ряда сосудорасширяющих веществ, получивших название простагландинов. Такое название дано потому, что впервые эти-вещества были найдены в семенной жидкости у мужчин и предполагалось, что их образует предстательная железа. Простагландины представ­ляют собой производные ненасыщенных жирных кислот.

 

Из подчелюстной, поджелудочной желез, из легких и некоторых других органов получен активный сосудорасширяющий полипептид брадикинин. Он вызывает расслабление гладкой мускулатуры артериол и понижает уровень АД. Брадикинин появляется в коже при действии тепла и является одним из факторов, обусловливающих расширение сосудов при нагревании. Он образуется при расщеплении одного из глобулинов плазмы крови под влиянием находящегося в тканях фермента калликреина.

 

К сосудорасширяющим веществам относится ацетилхолин (АХ), который образуется в окончаниях парасимпатических нервов и сим­патических вазодилататоров. Он быстро разрушается в крови, по­этому его действие на сосуды в физиологических условиях чисто местное.

 

Сосудорасширяющим веществом является также гистамин — вещество, образующееся в слизистой оболочке желудка и кишеч­ника, а также во многих других органах, в частности в коже при ее раздражении и в скелетной мускулатуре во время работы. Гистамин расширяет артериолы и увеличивает кровенаполнение капилляров. При введении 1—2 мг гистамина в вену кошке, несмотря на то что сердце продолжает работать с прежней силой, уровень АД резко падает вследствие уменьшения притока крови к сердцу: очень большое количество крови животного оказывается сосредоточенным в капиллярах, главным образом брюшной поло­сти. Снижение АД и нарушение кровообращения при этом подобны тем, какие возникают при большой кровопотере. Они сопровож­даются нарушением деятельности ЦНС вследствие расстройства мозгового кровообращения. Совокупность перечисленных явлений объединяется понятием «шок». Тяжелые нарушения, возникающие в организме при введении больших доз гистамина, называют гистаминовым шоком.

 

Усиленным образованием и действием гистамина объясняют ре­акцию покраснения кожи. Эта реакция вызывается влиянием раз- личных раздражений, например потирание кожи, тепловое воздей­ствие, ультрафиолетовое облучение. Кроме гистамина и АХ, еще ряд других сосудорасширяющих веществ усиленно высвобождается из связанного состояния или образуется в скелетной мускулатуре при ее работе: АТФ и продукты ее распада (в частности, адениловая кислота), молочная и угольная кислоты и др.

 


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.039 с.