Распад и окисление органических веществ в клетках — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Распад и окисление органических веществ в клетках

2019-08-04 848
Распад и окисление органических веществ в клетках 0.00 из 5.00 0 оценок
Заказать работу

Для жизнедеятельности организма постоянно требуется энергия. Она образуется при распаде органических соединений — в основном углеводов и жиров, в меньшей степени — белков. Белки нужны организму человека для обеспечения анаболических процессов. Энергия выделяется при разрушении химических связей между атомами этих молекул. Частично она рассеивается в виде тепла, а частично запасается в виде АТФ (аденозинтрифосфат). Соотношение между рассеянной энергией и запасенной примерно 1:1.

В молекуле АТФ между остатками фосфорной кислоты имеются макроэргические связи, при разрыве которых выделяется большое количество энергии. Разрыв связей при гидролизе молекул АТФ осуществляется последовательно до АДФ (аденозиндифосфата) и АМФ (аденозинмонофосфата). Энергия, запасенная в АТФ, может быть использована клетками организма по мере необходимости. Таким образом, АТФ — универсальный аккумулятор энергии в клетке.

Сущностью процесса образования АТФ является фосфорилирование — присоединение остатка фосфорной кислоты к АДФ. Однако для этого необходима энергия, которая образуется в результате распада сложных органических молекул и тканевого дыхания. В качестве примера можно рассмотреть образование АТФ при распаде одной молекулы глюкозы (С6Н12O6). Полное расщепление глюкозы до углекислого газа и воды в клетке требует прохождения анаэробного (бескислородного) и аэробного (с участием кислорода) процессов ее окисления (рис. 1).

Гликолиз (анаэробное окисление). Происходит в цитоплазме клетки без участия кислорода. В последнее время установлено, что гликолиз может активно протекать с высокой скоростью и в аэробных условиях. При гликолизе происходят последовательно 10 биохимических реакций, каждая из которых катализируется своим ферментом. При достаточном количестве кислорода в клетке конечным продуктом анаэробного окисления является пировиноградная кислота (ПВК). При недостатке кислорода в клетке происходит еще одна, одиннадцатая, реакция гликолиза, в результате которой из ПВК образуется молочная кислота. В процессе 10 реакций гликолиза образуются две молекулы ПВК и две молекулы АТФ.

 

 Рис. 1. Распад и окисление глюкозы в клетке

 

Дефицит кислорода наблюдается в клетках, например, в случае чрезмерной физической нагрузки. При этом в цитоплазме происходит активация гликолитических процессов и в большом количестве из глюкозы образуется молочная кислота (лактат). Это вещество не может быть использовано клеткой в дальнейшем и удаляется из нее. При значительном накоплении лактата возникают болезненные ощущения, связанные с закислением внутренней среды организма.

Аэробное окисление. ПВК поступает из цитоплазмы клетки в митохондрии, где происходит ее декарбоксилирование до уксусной кислоты, которая «сгорает» в цикле Кребса до углекислоты с освобождением протонов водорода. В дыхательной цепи протоны водорода соединяются с кислородом, образуя воду. При этом происходит синтез 36 молекул АТФ. Суммарная реакция распада глюкозы выглядит следующим образом:

С6Н12O6 + 6O2 -» 6СO2 + 6Н20 + Q (энергия)

Тканевое дыхание. Так называют обмен газов, происходящий в клетках при биологическом окислении питательных веществ. В ходе окислительных процессов клетки выделяют конечный продукт метаболизма — углекислый газ и одновременно поглощают из кровеносных капилляров кислород. При этом атомы водорода, образующиеся при окислении глюкозы, переносятся на ферменты внутренней мембраны митохондрий. Это так называемая дыхательная транспортная цепь. Водород взаимодействует с кислородом, образуя воду. Ток протонов водорода характеризуется значительным выделением энергии, которая расходуется на синтез АТФ из АДФ и остатка фосфорной кислоты. В результате этих реакций при окислении одной молекулы глюкозы образуется 38 молекул АТФ. При этом недостаток кислорода лимитирует окислительные реакции значительно сильнее, чем неадекватное удаление углекислого газа. Энергия, аккумулированная в АТФ, используется организмом для поддержания всех его функций, жизненных процессов:

- синтеза новых органических веществ, свойственных организму (белков, жиров, углеводов, ДНК), образования новых клеточных структур и органелл;

- осуществления основных жизненных процессов в клетке (митоза, транспорта веществ в клетку и др.);

- поддержания температурного гомеостаза организма.

 

ОБМЕН ЭНЕРГИИ

Основной обмен. Это минимальный уровень энерготрат, который необходим для поддержания жизненных функций организма в условиях полного физического и эмоционального покоя. Таким образом, данный показатель характеризует количество энергии, необходимой только для функционирования внутренних органов (сердца, легких, почек, печени и др.) и поддержания необходимой температуры тела. Измеряется он в утренние часы с помощью специальных приборов — калориметров. Испытуемый должен находиться в лежачем положении. Измерение проводят натощак, при максимальном расслаблении мышц, при этом внешняя температура поддерживается на уровне 22°С. Приборы фиксируют выделяемое организмом тепло. Это так называемый метод прямой калориметрии. Было установлено, что величина основного обмена для взрослого мужчины составляет примерно 4,2 кДж на 1 кг массы тела в час, т.е. 7200 кДж в сутки (для человека массой 72 кг). Величина основного обмена у женщин несколько ниже. Этот показатель уменьшается с возрастом.

На практике чаще используют метод непрямой калориметрии. Определяют объем легочной вентиляции, а затем количество поглощенного кислорода и выделенного углекислого газа. Отношение объема выделенного углекислого газа к объему поглощенного кислорода называют дыхательным коэффициентом. По величине последнего можно судить о характере окислительных процессов в организме.

Рассчитать основной обмен можно по таблицам. В этом случае определяют среднестатистический уровень основного обмена. Для вычисления необходимо знать рост, массу тела, возраст (прил. 2). Затем по формуле Рида вычисляют процент отклонения величины основного обмена от нормы. Для применения формулы необходимо знать артериальное давление и частоту пульса:

О = 0,75(ЧП + 0,75ДП) - 72,

где О — отклонение, %; Чп — частота пульса; Дп — пульсовое давление (разница между величиной систолического и диастолического АД).

Для упрощения расчетов по формуле Рида можно использовать специальную номограмму (рис. 2). Соединив линейкой значения частоты пульса и пульсового давления, в средней колонке находим величину процентного отклонения основного обмена от нормы. Затем, исходя из данных таблицы, проводят перерасчет уровня основного обмена на величину полученного процентного отклонения.

Интенсивность обменных процессов резко возрастает при физической нагрузке. При этом люди, занятые легким физическим трудом, тратят 9200 кДж в сутки, средней степени — 12000-15000 кДж в сутки, а тяжелым — 16000-18000 кДж в сутки. Следовательно, питание человека должно соответствовать энерготратам и полностью компенсировать их.

Рис. 10.2. Номограмма Рида

 

Обмен энергии между организмом и окружающей средой. Человек относится к гомойотермным (теплокровным) животным, т.е. он характеризуется поддержанием постоянной температуры тела с допустимыми небольшими ее колебаниями. Уровень обмена веществ теплокровных существ значительно выше холоднокровных. Поддержание постоянной температуры тела происходит за счет строгого баланса процессов образования тепла организмом человека (теплопродукция) и его обмена с внешней средой (теплоотдача). При этом образование тепла происходит в так называемом «ядре» человеческого организма, к которому относят внутренние органы и мышцы. Теплообмен обеспечивает «оболочка», которая включает кожу, слизистую оболочку полости рта и глотки, глазного яблока и дыхательных путей. Температура тела человека неравномерна в разных его участках. Так, в температурном «ядре» (внутренние органы) она, как правило, выше чем на поверхности кожи. Нормальной температурой в подмышечной впадине считаются значения 36,1—37,1 °С. Особая роль принадлежит внутренним средам организма, обеспечивающим теплообмен между ядром и оболочкой. Таким образом, терморегуляция обеспечивается следующими процессами: теплопродукцией (в «ядре»), теплообменом между «ядром» и «оболочкой» (обеспечивается преимущественно кровью и лимфой) и теплоотдачей во внешнюю среду.

Теплопродукция осуществляется, в основном, в результате реакций распада и окисления органических веществ. Примерно 50 % образующейся при этом энергии переходит в тепло без образования АТФ. Значительная часть образовавшегося АТФ также используется для поддержания установленной температуры тела. Большое количество тепла образуется в мышцах при совершении человеком физической работы. По образному выражению И. П. Павлова, мышцы выполняют роль «печки», согревающей организм. У новорожденных активная теплопродукция наблюдается также в бурой жировой ткани. Тепло образуется и в результате сокращений гладких мышц внутренних органов.

Отдача тепла во внешнюю среду осуществляется несколькими способами: теплопроведение, конвекция, излучение и испарение. Излучение — способ отдачи тепла в окружающую среду поверхностью тела посредством инфракрасных волн. Глаз человека не может уловить этот вид электромагнитных волн. Однако существуют живые организмы, способные их различать (например, некоторые змеи). При температуре 20°С и относительной влажности воздуха 50% излучение может составить 40-50 % всего отдаваемого тепла. Конвекция — способ отдачи тепла при контакте тела с движущимися потоками воздуха. Теплопроведение — способ отдачи тепла через непосредственное соприкосновение тела человека с другими физическими телами (например, одеждой).

Первые три механизма теплоотдачи становятся неэффективными при выравнивании температуры тела и температуры окружающей среды. В этих условиях основным способом отдачи тепла является испарение пота с поверхности кожи и влаги с поверхности слизистых оболочек. Количество испаряемой воды в условиях тяжелой физической работы и высокой температуры может доходить до 2 л/ч.

Основную роль в теплоотдаче играет кожа. При высоких температурах внешней среды сосуды кожи расширяются, кровь поступает в нее в значительно больших количествах, чем в условиях температурного комфорта (25-26°С). Усиление кровотока через кожу увеличивает потоотделение и потерю организмом тепла. При понижении температуры внешней среды идет перераспределение кровотока во внутренние органы. При этом сосуды кожи суживаются, кровоток в коже и соответственно испарение уменьшаются. Следовательно, уменьшается и выделение тепла из организма.

При охлаждении происходит сокращение гладких мышечных клеток, образующих мышцу, поднимающую волос. Стержень волоса приподнимается, и происходит выделение тепла. В то же время эта мышца вызывает некоторое сжатие кожи и лежащих в ее верхних слоях кровеносных сосудов. Возникает «гусиная кожа». Эти процессы сопровождаются снижением теплоотдачи.

 

ТЕРМОРЕГУЛЯЦИЯ

Центр терморегуляции находится в гипоталамусе (промежуточном мозге). По проводящим путям к нему поступают импульсы от терморецепторов — специализированных нервных окончаний, способных воспринимать изменения температуры различных участков тела человека. Термочувствительные клетки центра терморегуляции способны различать разницу температуры в 0,01 °С. Регуляция теплообмена осуществляется центром терморегуляции посредством воздействия на эндокринную и вегетативную системы. Увеличение теплопродукции наблюдается в результате возрастания окислительных процессов (активируются катаболические процессы) и повышения мышечной активности. Это происходит через возбуждение соматических нервных волокон. Под влиянием гормонов и нервных импульсов изменяется деятельность сердца и сосудов, что приводит к адекватным изменениям в теплообмене между «ядром» и «оболочкой», а также в теплообмене с внешней средой. Аналогичным способом регулируются процессы удаления тепла из «оболочки» во внешнюю среду путем конвекции, излучения, тепло- проведения и испарения.

 

РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ

Обмен веществ и энергии — свойство всех клеток и тканей организма. Следовательно, регуляция обмена веществ подразумевает регуляцию множества функций организма (дыхания, пищеварения, кровообращения, выделения и др.). Значительную роль в регуляции обмена веществ играет нервная система, в частности гипоталамус. Этот отдел головного мозга включает в себя ряд важных центров: голода и насыщения, жажды, терморегуляции. Эти центры реализуют свои функции через вегетативную нервную систему. Кроме того, гипоталамус и расположенный рядом с ним гипофиз координируют работу практически всех желез внутренней секреции.

Эндокринная система оказывает решающее влияние на регуляцию обмена веществ и энергии. Гормоны воздействуют на скорость биохимических превращений непосредственно в клетке. Совокупность их действия на отдельные клетки вызывает изменения в функционировании всего организма. Приведем лишь некоторые примеры влияния гормонов на обмен веществ. Соматотропный гормон гипофиза оказывает выраженное анаболическое действие, ускоряет синтез пластических веществ, следовательно, ускоряет рост. Катехоламины мозгового вещества надпочечников усиливают окислительные процессы, энергообразование. Тироксин и трийодтиронин (гормоны щитовидной железы) стимулируют синтез белка из аминокислот и в то же время активируют разрушение жиров и углеводов.

Приложение 5

Закрепление


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.