Окрашивают по способу Циля-Нильсена. — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Окрашивают по способу Циля-Нильсена.

2018-01-27 183
Окрашивают по способу Циля-Нильсена. 0.00 из 5.00 0 оценок
Заказать работу

Споры прочно удерживают карболовый фуксин и окрашиваются в красный цвет, цитоплазма бактерий обесцвечивается 5% серной кислотой и после докрашивания метиленовым синим приобретает синий цвет.

РАЗДЕЛ II. ФИЗИОЛОГИЯ МИКРООРГАНИЗМОВ

ПИТАНИЕ БАКТЕРИЙ.

Бактерии, как и все другие организмы, для существования и воспроизводства себе подобных нуждаются в постоянном обмене веществ с окружающей средой. Превращения веществ в клетке (метаболизм) представлены противоположными, но и взаимосвязанными процессами, направленными, во-первых, на распад сложных питательных веществ на более простые, это звено метаболизма называется катаболизмом, а, во-вторых, на превращения простых веществ в ходе реакций промежуточного обмена в более сложные низкомолекулярные соединения, из которых далее синтезируются полимерные макромолекулы. Это второе звено метаболизма называется анаболизмом. Для осуществления процессов метаболизма питательные вещества проникают в бактериальную клетку извне через цитоплазматическую мембрану, при этом, клеточная стенка не служит препятствием для прохождения ионов и мелких молекул. Мембранные белки - пермеазы или транслоказы - обладают ферментативными свойствами и помогают осуществлять транспорт веществ в клетку.

Различают три механизма транспорта, два из них обеспечивают только передачу, но не накопление веществ в клетке. Это простая или пассивная диффузия и облегченная диффузия. Простая диффузия не специфична, для нее имеет значение только величина молекул. Путем простой диффузии в клетку проникают чужеродные для нее вещества - яды, ингибиторы, лекарственные препараты. При облегченной диффузии в клетку проникают те молекулы, концентрация которых в цитоплазме ниже, чем в окружающей среде. Этот процесс осуществляется благодаря субстрат-специфической пермеазе. Затрат энергии при этом не происходит. Третий механизм питания клетки - активный транспорт. Он тоже происходит с участием субстратных белков ферментов, но при этом затрачивается энергия, а проникшие в клетку вещества накапливаются в ней. Молекулы, проникшие в клетку путем активного транспорта через мембрану, претерпевают химические превращения, например, фосфорилирование.

Выход продуктов метаболизма из бактериальной клетки в окружающую среду так же осуществляется путем неконтролируемой диффузии или при участии транспортных систем - в тех случаях, когда в результате процессов брожения, неполного окисления или нарушений метаболизма вещества накапливаются в клетке в количествах, превышающих физиологическую норму. Для роста и размножения бактерий, а, следовательно, и для их питания, необходимы различные химические соединения, растворенные в воде. По количественному вкладу в построение клетки различают макро- и микроэлементы. К макроэлементам относят 10 элементов таблицы Менделеева: углерод, водород, кислород, азот, серу, калий, кальций, фосфор, магний, железо. Микроэлементы нужны бактериям в очень малых, следовых, количествах, они представлены марганцем, молибденом, цинком, медью, кобальтом, никелем, хлором, бромом и некоторыми другими металлами и неметаллами. Большинство из них содержится в виде примесей в макроэлементах или может попадать в питательные среды из стеклянной посуды, воды или воздуха. Некоторые бактерии могут обходится и без микроэлементов.
По потребности в углероде бактерии делятся на две большие группы: автотрофы или органотрофы и гетеротрофы или литотрофы.

Бактерии - автотрофы способны получать энергию путем окисления неорганических соединений, они, как правило, используют СО2 как основной источник, содержащий углерод в наиболее окисленной форме. Поэтому при культивировании автотрофов необходимо обеспечить клетки углекислотой, так как концентрация СО2 в воздухе не превышает 0,03%, и ее поступление в среду за счет диффузии недостаточно для роста микроорганизмов. В питательные среды для культивирования автотрофов вносят карбонат кальция (СаСО3) или бикарбонат натрия (NaНСО3). Иногда через питательную среду продувают воздух, обогащенный 1-5% СО2.

Бактерии - гетеротрофы получают углерод из органических соединений. В зависимости от индивидуальных особенностей микроорганизмов источником углерода могут быть разные органические соединения - спирты, углеводы, ароматические соединения, органические кислоты.

Гетеротрофы, в свою очередь, разделяются на сапрофитов (метатрофов), живущих за счет органических соединений, поступающих в бактериальную клетку из внешней среды и паразитов (паратрофов), способных утилизировать только продукты метаболизма внутри живой клетки. Паразитизм может быть факультативным и абсолютным или облигатным.

Для роста микроорганизмов так же необходим азот, который входит в состав органических соединений или солей в разной степени восстановления. Это могут быть соли аммония, нитраты или отдельные аминокислоты. Для удовлетворения потребности бактерий в азоте используют также продукты неполного расщепления белков животного происхождения - гидролизаты, пептоны и сложные белковые смеси - нативную сыворотку животных, асцитическую жидкость и др.

Кроме углерода, азота и других химических элементов, многие бактерии нуждаются в факторах роста, к которым относятся витамины, основания нуклеиновых кислот и другие биологически активные вещества. По этому признаку микроорганизмы можно разделить на две группы: ауксотрофы, для которых в среде необходимо наличие одного или нескольких факторов роста и прототрофы, они в факторах роста не нуждаются.

В среде обитания бактерий кроме биосинтетического должен находиться и энергетический материал. По способу получения энергии бактерии также принято делить на две группы: хемотрофы и фототрофы. Хемотрофы используют энергию окисления различных соединений. В зависимости от окисляемого субстрата среди хемотрофных организмов выделяют хемолитотрофы и хемоорганотрофы. Фототрофы для удовлетворения энергетических потребностей используют энергию света.

ПИТАТЕЛЬНЫЕ СРЕДЫ.

В лабораторных или производственных условиях бактерии выращивают (культивируют) на средах, которые должны удовлетворять потребности бактерий в питательных веществах, иметь адекватное значение величины рН, изотоничность и быть стерильными, а по-возможности и прозрачными. Специфичность большинства питательных сред определяют соединения углерода и азота, но так как конструктивные и энергетические процессы микроорганизмов разнообразны, неодинаковы и их потребности в питательных веществах.

Питательные среды принято делить на несколько групп: среды которые отличаются по составу и происхождению, физическому состоянию или консистенции и функциональному или целевому назначению.
По происхождению среды бывают естественными (натуральными) и искусственными (синтетическими). К естественным средам относят те, в состав которых входят продукты растительного или животного происхождения. Они содержат все компоненты, необходимые для роста и развития бактерий, но имеют непостоянный химический состав, то есть они нестабильны. Поэтому такие питательные среды не пригодны для изучения метаболизма бактерий, а ипользуются, в основном, для накопления биомассы, поддержания культур бактерий в жизнеспособном состоянии и для диагностических целей, например, для выделений чистых культур бактерий. К естественным средам относятся молоко, кровь и сыворотка крови, отвары и экстракты из природных субстратов, пептонная и мясная вода, мясо-пептонные бульон и агар, дрожжевые экстракты, картофельные, яичные и желчесодержащие среды.

Синтетические (искусственные) среды имеют определенный химический состав и точное количественное содержание питательных веществ. Их используют для изучения метаболизма бактерий, исследования физиологии и биохимии микроорганизмов. Примером синтетической среды могут служить среды Козера и Симмонса, используемые для изучения способности бактерий утилизировать цитраты. В состав этих сред, наряду с другими солями, входят цитрат натрия и индикатор.
В практике микробиологии, как правило, используются комбинированные питательные среды, в которых сочетаются естественные компоненты с неорганическими солями. Примерами таких сред являются агар Цейсслера, в состав которого входит МПА, кровь и сахар, среды Гисса, содержащие пептон, агар, один из сахаров и индикатор, среда Раппопорта, состоящая из желчного бульона, глюкозы и индикатора.

Среды можно по составу разделить так же на простые и сложные. К простым относятся мясная и пептонная вода, мясо-пептонные бульон и агар. Добавление к таким средам одного или нескольких ингредиентов - углеводов, крови, сыворотки и других составляющих делают их сложными.
По физическому состоянию питательные среды могут быть жидкими, полужидкими, плотными или твердыми, сыпучими или сухими. Жидкие среды представлены, как правило, водными растворами необходимых для жизни веществ. Их используют для накопления биомассы, обогащения культур бактерий, изучения метаболизма. Полужидкие и плотные питательные среды получают из жидких, добавляя к ним агар или желатину. Концентрация агара для полужидких сред 0,5-0,7%, а для плотных 1,5-2%.
Полисахарид агар получают из некоторых видов морских водорослей, его высушивают и хранят в виде пластин или порошка. Бактерии не используют агар в качестве субстрата и поэтому состав плотной питательной среды зависит от состава жидкой среды, к которой добавлен агар. Агар плавится примерно при температуре 100 ° С и застывает при 40 ° С. Агаризированные среды разливают в пробирки или чашки Петри в расплавленном состоянии, а затем охлаждают. Для уплотнения сред иногда используют желатину, добавляя ее к жидким средам в 10-20% концентрации. Применение желатины ограничено тем, что она разжижается протеолитическими ферментами бактерий и ее применяют, в основном, в питательных средах для диагностических целей. Для уплотнения сред используют, кроме того, селикогель и каррагенан, получаемый из красных морских водорослей. Пластины геля, пропитанные питательной средой, используют для культивирования бактерий-автотрофов.

Сухие питательные среды представляют смеси составляющих питательных сред определенного состава. Перед использованием их растворяют в воде в соответствии с инструкцией, указанной на этикетке, устанавливают необходимое значение рН и стерилизуют. Применение сухих питательных сред облегчает работу по приготовлению сложных сред в лабораториях.

По целевому назначению питательные среды делят на несколько групп:

· основные или универсальные простые среды, например, МПА, МПБ; на них могут расти многие виды неприхотливых микроорганизмов;

· специальные или сложные среды используют для культивирования тех бактерий, которые не могут расти на основных простых средах; в состав специальных сред вводят, например, углеводы для роста стрептококков, желчь для культивирования сальмонелл, дефибринированную кровь для дифтерийной палочки.

Среди сложных сред можно выделить избирательные или элективные среды. Они предназначены для выделения и культивирования определенного вида бактерий из материала, содержащего большое количество разных видов микроорганизмов. Например, для выделения возбудителя туберкулеза из мокроты больного используют среду Левинштейна-Йенсена, сальмонелл из испражнений - среду Плоскирева. В сложном составе таких сред содержатся вещества, ингибирующие рост посторонней микрофлоры, но не влияющие на жизнедеятельность искомого вида бактерий. Такими веществами могут быть анилиновые красители, желчь, хлористый натрий в концентрации выше 1%.
Разновидность элективных - селективные питательные среды. В их состав входят не только вещества, подавляющие рост отдельных групп микроорганизмов, но и стимуляторы роста отдельных видов бактерий.
Дифференциально-диагностические среды предназначены для идентификации бактерий по биохимическим свойствам. В основе использования этих сред лежат различия в ферментативном составе бактерий и способности ферментов расщеплять тот или иной субстрат. Существуют среды для определения гликолитической активности бактерий, в их состав входят один (среды Гисса), два (среды Ресселя) или три (среда Клиглера) сахара. Протеолитическую активность бактерий изучают на МПБ, средах с желатиной, свернутой сыворотке. Возможность ферментировать более простые азотсодержащие соединения изучают на питательных средах с аминокислотами, бульоне с мочевиной.

Способность бактерий к выделению токсинов и ферментов агрессии исследуют на кровяных агарах, желточно-солевом агаре, безсывороточном фосфатном агаре и других подобных средах.

Консервирующие среды используют для транспортировки и хранения в течение длительного времени материала, содержащего бактерии. В их состав входят глицерин, хлорид натрия и фосфатно-буферные растворы.
Питательные среды стерилизуют в автоклавах при разных режимах, которые зависят от состава среды или, если питательные среды содержат термолабильные компоненты, путем стерилизующей фильтрации.

ФЕРМЕНТЫ БАКТЕРИЙ.

Питание микроорганизмов осуществляется благодаря наличию в клетке различных ферментов, катализирующих все жизненно необходимые реакции. Ферменты - это биологические катализаторы белковой природы. Микробная клетка, подобно клеткам высших организмов, оснащена достаточно активным ферментативным аппаратом. Ферменты микроорганизмов обладают теми же свойствами и функциями, что и ферменты высших организмов. В соответствии с катализирующими реакциями все ферменты разделяют на шесть классов:

  • Оксидоредуктазы - катализируют реакции окисления-восстановления.
  • Трансферазы - катализируют реакции переноса различных групп от донора к акцептору.
  • Гидролазы - катализируют разрыв связей в субстратах с присоединением воды.
  • Лиазы - катализируют реакции разрыва связей в субстрате без присоединения воды или окисления.
  • Изомеразы - катализируют превращения в пределах одной молекулы (внутримолекулярные перестройки).
  • Лигазы (синтетазы) - катализируют присоединение двух молекул с использованием энергии фосфатных связей.

Несмотря на малые размеры микробной клетки, распределение в ней ферментов строго упорядоченно. Ферменты энергетического обмена и транспорта питательных веществ локализованы в цитоплазматической мембране и ее производных. Ферменты белкового синтеза связаны с рибосомами. Многие ферменты не связаны с определенными структурами клетки, а находятся в цитоплазме в растворенном виде.
Ферменты бактерий подразделяются на экз о- и эндоферменты. Эндоферменты функционируют только внутри клетки. Они катализируют реакции биосинтеза и энергетического обмена. Экзоферменты выделяются клеткой в среду и катализируют реакции гидролиза сложных органических соединений на более простые, доступные для ассимиляции микробной клеткой. К ним относятся гидролитические ферменты, играющие исключительно важную роль в питании микроорганизмов.
В зависимости от условий образования ферментов их разделяют на конститутивные и индуцибельные. Конститутивными называют ферменты, синтезируемые клеткой вне зависимости от субстрата, на котором развиваются бактерии. Например, ферменты гликолиза. Индуцибельные ферменты синтезируются только в ответ на присутствие в среде необходимого для клетки субстрата-индуктора. Он взаимодействует с репрессором, инактивирует его, в результате чего включается генетический аппарат клетки и начинается синтез соответствующего фермента. Индуцированный синтез ферментов идет, пока в среде присутствует индуктор. При этом ферменты синтезируются заново во всех клетках одновременно. Индукторами биосинтеза являются многие питательные вещества. К индуцибельным относится большинство гидролитических ферментов.

Среди сложных сред можно выделить избирательные или элективные среды. Они предназначены для выделения и культивирования определенного вида бактерий из материала, содержащего большое количество разных видов микроорганизмов. Например, для выделения возбудителя туберкулеза из мокроты больного используют среду Левинштейна-Йенсена, сальмонелл из испражнений - среду Плоскирева. В сложном составе таких сред содержатся вещества, ингибирующие рост посторонней микрофлоры, но не влияющие на жизнедеятельность искомого вида бактерий. Такими веществами могут быть анилиновые красители, желчь, хлористый натрий в концентрации выше 1%.
Разновидность элективных - селективные питательные среды. В их состав входят не только вещества, подавляющие рост отдельных групп микроорганизмов, но и стимуляторы роста отдельных видов бактерий.

Дифференциально-диагностические среды предназначены для идентификации бактерий по биохимическим свойствам. В основе использования этих сред лежат различия в ферментативном составе бактерий и способности ферментов расщеплять тот или иной субстрат. Существуют среды для определения гликолитической активности бактерий, в их состав входят один (среды Гисса), два (среды Ресселя) или три (среда Клиглера) сахара. Протеолитическую активность бактерий изучают на МПБ, средах с желатиной, свернутой сыворотке. Возможность ферментировать более простые азотсодержащие соединения изучают на питательных средах с аминокислотами, бульоне с мочевиной.

Способность бактерий к выделению токсинов и ферментов агрессии исследуют на кровяных агарах, желточно-солевом агаре, безсывороточном фосфатном агаре и других подобных средах.

Консервирующие среды используют для транспортировки и хранения в течение длительного времени материала, содержащего бактерии. В их состав входят глицерин, хлорид натрия и фосфатно-буферные растворы.
Питательные среды стерилизуют в автоклавах при разных режимах, которые зависят от состава среды или, если питательные среды содержат термолабильные компоненты, путем стерилизующей фильтрации.

Известны также ферменты, которые получили название аллостерических. Кроме активного центра у них имеется регуляторный или аллостерический центр, который в молекуле фермента пространственно разделен с активным центром. Аллостерическим (от греч. allos - иной, чужой) он называется потому, что молекулы, связывающиеся с этим центром, по строению (стерически) не похожи на субстрат, но оказывают влияние на связывание и превращение субстрата в активном центре, изменяя его конфигурацию. Молекула фермента может иметь несколько аллостерических центров. Вещества, связывающиеся с аллостерическим центром, называют аллостерическими эффекторами. Они влияют через аллостерический центр на функцию активного центра: или облегчают ее, или затрудняют. Соответственно аллостерические эффекторы называются положительными (активаторы) или отрицательными (ингибиторы). Аллостерические ферменты играют важную роль в тонкой регуляции метаболизма бактерий. Поскольку практически все реакции в клетке катализируются ферментами, регуляция метаболизма сводится к регуляции интенсивности ферментативных реакций.
Некоторые ферменты, так называемые ферменты агрессии, разрушают ткани и клетки макроорганизма, обуславливая тем самым распространение патогенных микроорганизмов и их токсинов в инфицированных тканях. К таким ферментам относятся плазмокоагулаза, нейраминидаза, коллагеназа, лецитиназа, гиалуронидаза и некоторые другие ферменты. Гиалуронидаза стрептококков, например, расщепляет гиалуроновую кислоту в мембранах клеток соединительных тканей макроорганизма, что способствует распространению возбудителей и их токсинов в организме, обуславливая высокую инвазивность этих бактерий.

Плазмокоагулаза является главным фактором патогенности стафилококков, так как участвует в превращении протромбина в тромбин, который вызывает образование фибриногена, в результате чего каждая бактерия покрывается пленкой, предохраняющей ее от фагоцитоза. Ферменты микроорганизмов, такие как лигазы и рестриктазы, нашли широкое применение в биотехнологии, в том числе в генетической инженерии, для получения различных биологически активных веществ, гибридом, продуцирующих моноклональные антитела, а также ряда продуктов в легкой и пищевой промышленности.
Ферменты микроорганизмов характеризуют их биологические свойства и поэтому их исследуют с целью идентификации бактерий. В зависимости от субстрата гидролитические ферменты принято делить на две большие группы:

· гидролитические или сахаролитические ферменты, субстратом для которых являются различные сахара, а продуктами их расщепления - кислоты, спирты, альдегиды, Н2О и СО2;

· протеолитические ферменты, расщепляющие белки с образованием полипептидов, аминокислот, аммиака, индола, сероводорода.

Для изучения активности ферментов при идентификации микроорганизмов широко используют дифференциально-диагностические среды, в состав которых входят определенные субстраты - сахара или белки.
При исследовании гидролитической активности бактерий распространены моносубстратные дифференциально-диагностические среды Гисса (пестрый ряд Гисса), лактозосодержашие среды Эндо, Левина, Плоскирева, дисубстратные среды Ресселя, полисубстратные среды Клиглера и Олькеницкого. Последние могут служить и для изучения протеолитических свойств бактерий, так как рост микроорганизмов сопровождается высвобождением аммиака. Протеолитические ферменты бактерий определяются также по выделению индола, сероводорода, расщеплению некоторых аминокислот, например, фенилаланина, лизина, цистина. Протеолитические ферменты способны изменять (разжижать) желатину, причем, разные виды бактерий по разному изменяют «столбик» желатины в пробирке с посевом микроорганизма. Так, при росте холерного вибриона «столбик» желатины принимает форму гвоздя, при росте стафилококка - чулка, при росте синегнойной палочки наблюдается послойное разжижение среды.

Окислительно-восстановительные ферменты, дегидрогеназы, каталазу определяют по изменению органического красителя - акцептора водорода. Способность микроорганизмов использовать в качестве источника углерода цитрат оценивают в специальных тестах основанных на работе ферментов.
В практических бактериологических лабораториях широко применяют микр о- и экспресс-методы для ориентировочного изучения биохимических свойств микроорганизмов. Для этой цели существует множество тест-систем. Наиболее часто используют систему индикаторных бумаг (СИБ). СИБы представляют из себя диски фильтровальной бумаги, пропитанные растворами сахаров или других субстратов в сочетании с индикаторами. Такие диски опускают в пробирку с выросшей в жидкой питательной среде культурой. По изменению цвета диска с субстратом судят о работе фермента. Микро-тест системы для изучения идентификации энтеробактерий представлены одноразовыми пластиковыми контейнерами со средами, содержащими различные субстраты, с добавлением индикаторов. Посев чистой культуры микроорганизмов в такие тест-системы позволяет быстро выявить способность бактерий утилизировать цитраты, глюкозу, сахарозу, выделять аммиак, индол, разлагать мочевину, лизин, фенилаланин и т.д.


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.034 с.