Классификация электрофоретических методов — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Классификация электрофоретических методов

2018-01-29 1635
Классификация электрофоретических методов 0.00 из 5.00 0 оценок
Заказать работу

Основными типами электрофореза являются:

- зональный электрофорез,

- изотахофорез,

- изоэлектрическое фокусирование,

- иммуноэлектрофорез.

Зональный электрофорез проводится при постоянном (не изменяющемся) значении рН буферного раствора, заполняющего данный носитель (бумагу, гель, др.). Исследуемый образец наносится пятном или тонким слоем на носитель, по которому и перемещается в электрическом поле. Усложненным вариантом зонального электрофореза является диск-электрофорез (многофазный зональный электрофорез), при котором рН и другие характеристики, постоянные внутри одной “фазы”, при переходе к другой “фазе” скачкообразно изменяются.

При изоэлектрическом фокусировании в среде для электрофореза создается плавный градиент рН. Белок останавливается в зоне, где значение рН равно его изоэлектрической точке (pI). Для создания градиента рН обычно используют раствор полиамино-поликарбоновых кислот, которыми насыщают носитель. В отсутствии электрического поля эта смесь обычно имеет значение рН равное 6.5. При наложении электрического поля указанные кислоты обеспечивают линейный градиент рН от 3 до 10.

В случае изотахофореза заряженные ионы сначала разделяются в соответствии с величинами их заряда и подвижности, а затем перемещаются в электрическом поле с одинаковыми и постоянными скоростями.

Иммуноэлектрофорез сочетает в себе электрофоретическое разделение белков с иммунопреципитацией, основанной на реакции “антиген – антитело”. Этот тип электрофореза превосходит остальные по чувствительности и разрешающей способности.

По цели применения электрофореза различают:

- аналитический электрофорез (для анализа состава смеси),

- препаративный электрофорез (для получения препаратов - значительных количеств чистых веществ).

По степени денатурации разделяемых белков различают:

- нативный электрофорез,

- электрофорез в денатурирующих условиях.

В отличие от нативного электрофореза, электрофорез в денатурирующих условиях предполагает применение химических реагентов, разрушающих пространственную структуру разделяемых белков и экранирующих собственный заряд молекулы.

По направлению фракционирования различают:

- одномерный (1D) электрофорез, при котором белки движутся в одном направлении (горизонтальный или вертикальный электрофорез),

- двумерный (2D) электрофорез, при котором сначала проводят разделение в одном направлении, а затем – в направлении, перпендикулярном первому. Двумерный электрофорез позволяет резко увеличить разрешаающую способность при разделении смесей, состоящих из большого количества разных белков. В зависимости от ориентации носителя (геля, бумаги, др.) электрофорез также может быть вертикальным или горизонтальным,

- электрофорез в объеме (3D). Один из наиболее точных аналитических методов применяемых для анализа белок и нуклеиновых кислот. Носитель находится внутри стеклянного сосуда (колонки). Примером такого способа служит капиллярный зональный электрофорез – метод разделения молекул по заряду и размеру в тонком капилляре, заполненном электролитом. Для проведения капиллярного электрофореза требуется относительно простое оборудование. Основные компоненты системы — флакон для нанесения образца, стартовый флакон, конечный флакон, капилляр, электроды, мощный источник питания, детектор и устройство обработки данных. Флакон для нанесения образца, стартовый и конечный флаконы заполнены электролитом, например, водным буферным раствором. Для нанесения образца конец капилляра опускают во флакон с образцом и затем перемещают в стартовый флакон. Миграция молекул анализируемых веществ осуществляется под действием электрического поля, которое прилагается между стартовым и конечным флаконами. Ионы передвигаются по капилляру в одном направлении под действием электроосмотического тока. Анализируемые вещества разделяются по электрофоретической мобильности и детектируются около конца капилляра. Эффективность разделения путем капиллярного электрофореза значительно выше, чем эффективность других методов разделения, например, высокоэффективной жидкостной хроматографии (ВЭЖХ). В отличие от ВЭЖХ, в случае капиллярного электрофореза не происходит массообмена между фазами. Профиль потока для систем электроосмотического потока является плоским, в противовес ламинарному профилю хроматографических колонок, в которых разделение происходит под давлением. В результате этого при электроосмотическом разделении не происходит расширения полос, как при хроматографии. Разделение капиллярным электрофорезом может иметь несколько сотен тысяч теоретических тарелок. Еще сильнее повысить разрешающую способность электрофореза помогает комбинирование различных типов, например, иммуноэлектрофорез в вариации капиллярного зонального электрофореза.

На сегодняшний день, в целях обеспечения высокого качества фармацевтических и биофармацевтических субстанций, принято использовать так называемые «системы для электрофореза». Это оборудование, позволяющее производить быстрый, точный и качественный анализ препаратов различными методами электрофоретического разделения. Программное обеспечение данных систем позволяет подобрать оптимальный метод и грамотно проанализировать полученные результаты.

Рис.2. Система фармацевтического анализа «PA 800 plus» от «BeckmanCoulter» позволяет проводить высокоточные качественные и количественные исследования биофармацевтических субстанций с высокой производительностью. Предел детекции: 10‑18 – 10‑21 моль. Обеспечивает лабораторию следующими методами контроля: электрофорез белков в денатурирующих условиях с додецилсульфатом натрия (SDS) высокого разрешения для разделения белковых примесей и определения чистоты лекарственной субстанции; автоматический анализ чистоты препаратов рекомбинантных моноклональных антител IgG (иммуноэлектрофорез высокого разрешения), капиллярное электрофоретическое изофокусирование для анализа гетерогенности белковой лекарственной субстанции; изучение профиля гликозилирования молекул для определения микрогетерогенности белковой лекарственной субстанции[1].

1.3. Носители, применяемые для проведения электрофореза:

Рассматривая историю появления метода электрофореза, можно отметить, что впервые электрофорез был применен без какого-либо носителя: электрическая цепь между электродами замыкалась через буферный раствор, в котором и происходило разделение белков. Позднее при электрофорезе начали применять носители жидкой фазы – полимеры, служащие “каркасом” для буферного раствора. Применение носителей позволило заметно снизить конвекцию (перемешивание) и, следовательно, повысить качество разделения белков. Носитель может быть в форме порошка, пленки, геля и др. Последующие разработки были посвящены усовершенствованию свойств носителей.

Идеальный носитель должен:

- резко снижать конвекцию;

- быть простым в приготовлении;

- иметь высокую теплопроводность (при низкой теплопроводности

трудно охлаждать систему);

- обладать низкой адсорбционной емкостью и химической инертностью в отношении веществ, подвергаемых электрофорезу;

- быть электронейтральным (не иметь заряда на поверхности), чтобы не вызывать эндоэлектроосмос. Если разделяемые белки заряжены отрицательно, то при электрофорезе они должны двигаться к аноду(+), однако, эндоэлектроосмос будет “тянуть” их в другую сторону, к катоду(‑), мешая электрофоретическому разделению.

Гели легко принимают разные геометрические формы, поэтому в названии электрофоретического метода с их использованием указывают, какова конфигурация рабочего пространства.

Гель для электрофореза можно заполимеризовать:

- в трубках,

- в капиллярах,

- в пластинах (“слэбах” – от англ. slab),

Основной недостаток электрофореза в трубках - это отсутствие теплооттока: температура в центре цилиндра геля оказывается выше, чем у его прилегающей к стеклу поверхности. Это приводит к изгибу белковых зон. На одну трубку наносится одна исследуемая проба. Повысить теплоотток можно, применяя очень тонкие трубки - капилляры. В тонких пластинах также достигается гораздо более эффективное отведение тепла, чем в трубках. Кроме того, конфигурация пластины позволяет в абсолютно идентичных условиях проводить разделение сразу нескольких проб. Пластины легко сканировать и удобно разрезать. По сравнению с цилиндрическими гелями, пластины позволяют значительно уменьшить концентрацию белка в наносимой пробе.


 

Таблица 1 - Преимущества и недостатки использования различных носителей при электрофорезе

Название метода, носитель Преимущества метода и/или носителя Недостатки
     
Электрофорез с подвижной границей (в свободном растворе). Носителя нет. Первый электрофоретический метод, позволивший разделять белки Сложно избежать конвекции – перемешивания разделяемых зон; для исследования нужна проба в десятки мг белка; разрешающая способность мала (не более 8 компонентов в пробе).
На фильтровальной или хроматографической бумаге (50-е годы XX в.) Сниженная конвекция, разделенные зоны можно зафиксировать и окрасить. Оборудование проще. Непрозрачность. Загрязнения и неоднородность бумаги мешают разделению. “Хвосты” на электрофореграммах из-за высокой адсорбционной емкости. Фон окрашивается, что затрудняет распознавание белковых зон.
На пленках из ацетата целлюлозы (известен с 1957г.) Быстрый, требует меньшего количества пробы для анализа. Низкая адсорбционная емкость помогает избежать появления “хвостов” на электрофореграмме. После окрашивания фон остается бесцветным. Пригодны для иммуноэлектрофореза. Непрозрачность в водных растворах (можно добиться прозрачности, погрузив в минеральное масло). Дороже, чем при использовании бумаги. Мало пригоден для препаративного электрофореза.
     
Продолжение таблицы 1
     
В крахмальном геле (предложен О. Смитисом) Первый носитель со свойствами молекулярного сита. Активно препятствует конвекции. Повышает разрешение. Низкая прозрачность, хрупкость, размер пор можно менять лишь в небольших пределах. Приготовление качественного геля трудоемко.
В агаровых и агарозных гелях Удовлетворительная прозрачность, высокая пластичность (проще резать, удобнее красить и определять ферментативную активность прямо в геле), простота изготовления. Из-за отрицательного заряда на сульфатных и СООН-группах сетки агара возникает электроосмос, приводящий к неравномерному распределению электрического поля, а иногда – гидростатического давления. Возможно химическое взаимодействие веществ с агаром.
В полиакриламидном (ПААГ) геле (предложен Л. Орнстейном и Д. Дэвисом) Химически инертен, можно кипятить. Можно задать необходимый размер пор и обеспечить свойства молекулярного сита. Высокая прозрачность. Легко готовить. Упругий, прочный. На сегодняшний день наилучший носитель, но готовится из акриламида - ядовитого вещества.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.