Раздел 8. Установки электрохимической и электрофизической обработки — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Раздел 8. Установки электрохимической и электрофизической обработки

2018-01-28 674
Раздел 8. Установки электрохимической и электрофизической обработки 0.00 из 5.00 0 оценок
Заказать работу

Лекция 7.

Раздел 8. Установки электрохимической и электрофизической обработки

Электрооборудование электролизных производств

Питание электролизных установок постоянным током осуществляется от генераторов постоянного тока или полупроводниковых выпрямительных агрегатов, преобразующих переменный ток промышленной частоты в постоянный. Распространение получили кремниевые выпрямительные агрегаты, с КПД 97-99 %.

Применяемые для питания электрических установок силовые трехфазные трансформаторы могут иметь встроенное устройство переключения под нагрузкой на стороне высшего напряжения и несколько вторичных обмоток. Каждая из вторичных обмоток, число которых зависит от числа фаз выпрямления, питает блок с полупроводниковыми вентилями.

Регулирование напряжения должно обеспечить необходимую глубину и плавность. Наибольшая глубина регулирования необходима при пуске электролизных установок. Необходимая ширина диапазона регулирования достигается за счет переключения сетевой обмотки трансформатора со звезды на треугольник, параллельно-последовательным включением ее секций и т.д. Применяется регулирование с помощью специального регулировочного трансформатора за счет изменения числа витков в обмотках высшего и низшего напряжения, т.е. его коэффициента трансформации. Наиболее рационально расположение этого трансформатора перед силовым. В качестве регулировочного трансформатора часто используется трехфазный автотрансформатор, рассчитанный на проходную мощность, равную номинальной мощности силового трансформатора. Автотрансформатор имеет несколько ступеней грубого регулирования с помощью ПБВ, внутри которых плавное регулирование напряжения производится с помощью устройства РПН.

Быстродействующие автоматические выключатели используются для оперативных отключений без нагрузок и редких отключений под нагрузкой. Они состоят из унифицированных узлов-блоков, укомплектованы однотипными реле и блоками управления.

Сильноточные коммутаторы постоянного тока в большинстве своем выполнены с жидкометаллическим контактом. В аппаратах с неподвижными электродами коммутация осуществляется движущимся по электродному каналу жидким металлом. В ряде коммутаторов применяются жидкометаллические пасты или угольные щетки.

К электролизным ваннам ток от источников питания электролизного производства подводится по специальным шинопроводам, состоящим из собранных в пакеты отдельных прямоугольных шин.

Источники питания установок электрохимической обработки

Электрохимическая обработка, основанная на анодном растворении, ведется на постоянном, импульсном, пульсирующем или асимметричном переменном токе.

ИП должны отвечать ряду требований: обеспечение необходимой точности и стабильности обработки, исключение разрушения электродов при коротких замыканиях, осуществление ступенчатого и плавного регулирования выходных величин, а также их стабилизация. Кроме того, они должны быть экономичными, удобными в эксплуатации, малогабаритными. Технологические возможности ИП определяются их внешними характеристиками, которые могут быть жесткими, естественными (слабопадающими) и крутопадающими.

В качестве ИП в основном используются полупроводниковые выпрямители, регулирующими элементами в которых служат тиристоры.

ИП состоят из следующих узлов: понижающего трансформатора, выпрямителя, цепи стабилизации условий обработки, регулирования параметров, а также защиты источника питания и самого станка при нарушении нормального протекания процесса обработки.

В статических ИП в качестве регулирующего элемента применяют тиристорные регуляторы, поскольку они имеют малые массу и габариты, меньшую инерционность, более высокий КПД. Кроме того, они снабжены быстродействующей системой защиты оборудования от коротких замыканий.

Электроэрозионная обработка металлов

Генераторы импульсов

Требования к генераторам импульсов (ГИ) включают в себя: а) формирование импульсов с заданными параметрами: амплитудой, длительностью, частотой, скважностью, б) необходимость достижения высокого КПД. При этом необходимо учесть свойства межэлектродного промежутка (МЭП) - резко нелинейного элемента электрической цепи.

Стабильность импульсов тока - постоянство их длительности зависит от постоянства свойств промежутка и крутизны переднего фронта импульса напряжения. Чем больше эта крутизна, тем стабильнее импульсы тока.

Импульсные генераторы различают по принципу действия, конструкции и параметрам импульсов. ГИ условно подразделяют на зависимые, ограниченно зависимые и независимые. В первых из них параметры генерируемых импульсов определяются физическим состоянием межэлектродного промежутка. В независимых генераторах импульсы не связаны с состоянием МЭП.

В основе ГИ лежит накопление энергии в реактивных элементах конденсаторе или индуктивной катушке и последующей отдаче ее в виде разряда в МЭП.

Релаксационные генераторы могут иметь разные модификации.

RС-генератор импульсов (рис. 13.2, а) состоит из последовательно соединенных ИП G, ключа К, токоограничивающего сопротивления R 1и накопительного конденсатора С 1, подключенного параллельно МЭП.

LC-генератор (рис. 13.2, б) имеет обмотку вибратора L, через которую протекает зарядный ток конденсатора С. Вначале он притягивает якорь Я электромагнитного вибратора и увеличивает МЭП, поднимая ЭИ.

К концу зарядки конденсатора ток через обмотку вибратора постепенно спадает, удерживающая якорь вибратора электромагнитная сила ослабевает и электроды начинают сближаться, уменьшая МЭП. После пробоя промежутка и прохождения импульса тока цикл работы генератора повторяется. Частота импульсов определяется соотношением L и С.

RLC-генераторы (рис. 13.2, в) имеют в зарядной цепи индуктивность L, что позволяет уменьшить сопротивление R, потери активной энергии на нем, следовательно повысить КПД. Такие генераторы работают при более низком напряжении, чем -генераторы, так как при наличии резонанса между индуктивностью и емкостью напряжение на конденсаторе-накопителе оказывается больше напряжения источника питания.

СС-генератор импульсов (рис. 13.2, г), в котором в качестве токоограничивающего элемента используется конденсатор С 1,имеет более высоким КПД по сравнению с LC -генератором. Частотные свойства СС -генератора определяются в основном частотными характеристиками диодов выпрямителя В.

Статические ГИ обеспечивают временные и энергетические параметры в широком диапазоне при отсутствии накопительных элементов. В них легко формируются прямоугольные и униполярные импульсы. Конструктивно они выполнены в основном на транзисторных или тиристорных полупроводниковых приборах.

Электроконтактная обработка

Электроконтактная обработка (ЭКО) применяется для съема материала с электропроводной заготовки. В этом виде обработки используется электроэрозионный принцип формообразования, поэтому для ЭКО справедливы многие закономерности элетроэрозионной обработки.

Схема простейшего устройства для ЭКО показана на рис. 13.3. Напряжение U Сот сети поступает на трансформатор 1. С его вторичной обмотки напряжение U с амплитудой до 40 В подается на два электрода, один из которых - диск 2 выполнен из электропроводного материала, второй - листовая заготовка 3. Дисковый ЭИ вращается от приводного двигателя с частотой п. Механическими средствами создается прижимающая диск к заготовке сила G ПР. МЭП заполнен непроводящей рабочей средой - воздухом, жидкостью, газожидкостной смесью.

Электроды в общем случае подвергаются одновременно механическому и электрическому воздействию. Мощность электрического воздействия определяется произведением UIcosφ, где U и I - действующие значения напряжения и тока.

Мощность механического воздействия равна 2 πМ C n /60, здесь М C- момент сопротивления на валу ЭИ; М C = G C r Д, G C - сила сопротивления; r Д- радиус диска. Значение G C определяет силу трения и тогда G C = k ТР G ПР, где k ТР - коэффициент трения между электродами. Суммарная мощность, поступающая в МЭП:

. (13.1)

В общем случае действуют три источника теплоты: механический, электроконтактный и электроэрозионный. При низком напряжении (1-2 В) преобладает механическое трение. При напряжении 2-10 В электроэнергии преобразуется в тепловую на контактном сопротивлении. При напряжении выше 10 В процесс приобретает электроэрозионный характер. При преобладании дугового разряда ЭКО называют электроконтактно-дуговой обработкой.

ЭКО на переменном токе имеет более высокие показатели, чем на постоянном; в частности, это экономия электроэнергии, снижение стоимости оборудования и установленной мощности, а также уменьшение занимаемой полезной площади.

Анодно-абразивная обработка

Этот тип обработки основан на анодном растворении и механическом (абразивном) воздействии на обрабатываемое изделие. При этом на поверхность электрода-заготовки (ЭЗ) могут воздействовать: электрический ток, обеспечивающий анодное растворение; механическая сила, создаваемая частицами абразива, режущими или царапающими поверхность ЭЗ; тепловой поток, приводящий к тепловой эрозии поверхностных слоев ЭЗ.

Схема межэлектродного промежутка при анодно-абразивной обработке (ААО) показана на рис. 14.1. ЭИ, поверхность которого со скоростью υ и движется вдоль поверхности ЭЗ, подключен к отрицательному полюсу, а к положительному полюсу подключен ЭЗ. МЭП заполняется раствором электролита.

Приложенная к ЭИ извне сила G поджимает его к ЭЗ,но так, чтобы между обоими телами не было обширного контакта и их электропроводные поверхности оказались разделенными зазором a min. При этом через МЭП проходит ток I, а расходуемая на обработку электрическая мощность P=UI.

Внешняя сила G вызывает силу трения G тр, которая приложена к поверхности ЭИ, движущегося со скоростью υ и. Таким образом, для обработки детали затрачивается также и механическая энергия A = υ и G тр.

При ААО удаляются выступы 5 на ЭЗ. Во впадинах материал снимается менее интенсивно.

Снятое с поверхности ЭИ вещество может находиться в трех конечных состояниях: химически связанном с составляющими электролита, в виде застывших капель металла и в виде металлических сколотых частиц.

Снятие металла с микровыступов обеспечивается подбором электрического и механического режимов, применением ЭИ, изготовленного из различных абразивных материалов, а также созданием рабочих сред различного состава.

Лекция 7.

Раздел 8. Установки электрохимической и электрофизической обработки


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.017 с.