Силы, действующие на выделенный объем сплошной среды (жидкости) — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Силы, действующие на выделенный объем сплошной среды (жидкости)

2017-12-13 397
Силы, действующие на выделенный объем сплошной среды (жидкости) 0.00 из 5.00 0 оценок
Заказать работу

Гипотеза сплошности.

«Рассматривать жидкие тела как совокупность отдельных молекул (в каждой отдельно) практически неподвижно, поэтому при изучении жидкости и газов (и вообще деформации тел) вводятся допущения, что эти тела заполняют пространство непрерывно, т.е. характеризуют определенными значениями параметра (плотность, температура, вязкость и тд.). при таком рассмотрении жидкое тело называют сплошной средой или континиумом. Жидкости. Все вещества в природе имеют молекулярное строение. По характеру молекулярных движений, а также по численным значениям межмолекулярных сил жидкости занимают промежуточное положение между газами и твердыми телами. Свойства жидкостей при высоких температурах и низких давлениях ближе к составам газов, а при низких температурах и высоких давлениях — к свойствам твердых тел. В газах расстояния между молекулами больше, а межмолекулярные силы меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.
Молекулы жидкости находятся в непрерывном хаотичном тепловом движении, отличающемся от хаотичного теплового движения газов и твердых тел: в жидкостях это движение осуществляется в виде колебаний (10п колебаний п секунду) относительно мгновенных центров и скачкообразных переходов от одного центра к другому. Тепловое движение молекул твердых тел — колебания относительно стабильных центров. Тепловое движение молекул газа — непрерывные скачкообразные перемены мест.
Диффузия молекул жидкостей и газов обусловливает их общее свойство — текучесть. Поэтому термин «жидкость» применяют для обозначения и собственно жидкости (несжимаемая или весьма мало сжимаемая, капельная жидкость), и газа (сжимаемая жидкость). В гидравлике рассматриваются равновесие и движение капельных жидкостей.
Гипотеза сплошности. Жидкость рассматривается как деформируемая система материальных частиц, непрерывно заполняющих пространство, в котором оно движется.
Жидкая частица представляет собой бесконечно малый объем, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3 • 1013 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся жидкостью.
При таком предположении жидкость в целом рассматривается как континуум — сплошная среда, непрерывно заполняющая пространство, т. е. принимается, что в жидкости нет пустот или разрывов, все характеристики жидкости являются непрерывными функциями, имеющими непрерывные частные производные по всем своим параметрам. Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости.
Правомерность применения модели жидкости — сплошная среда подтверждена всей практикой гидравлики.
Гипотеза сплошности нужна для того, чтобы можно было применить дифференциальное исчисление, определенные формулы в математике, которые мы проходим. Если будем рассматривать жидкости как несплошное тело, то нужно применять другую «математику», которая находиться только в стадии развития.

Силы, действующие на выделенный объем сплошной среды (жидкости)

Рассмотрим не­который объем жидкости (содержащийся в сосуде или объем, мыс­ленно выделенный из общей массы жидкости). Приложенные к нему силы можно разделить на массовые и поверхностные.

Массовые силы обусловлены действующим на жидкость силовым полем, они приложены к каждой частице жидкости и пропорцио­нальны их массе, примером таких сил являются силы тяжести, силы инерции переносного движения.

Поверхностные силы обусловлены взаимодействием рассматри­ваемого объема с окружающими его телами; если жидкость налита в сосуд — это силы реакции стенок сосуда; если рассматривается объ­ем, мысленно выделенный из общей массы жидкости — это силы, действующие на него со стороны «отброшенной» жидкости. Во всех случаях эти силы распределены по поверхности выделенного объема и определяются площадью поверхности, на которую они действуют.

Плотность.

Важнейшим физическим свойством жидкости, определяющим её концентрацию в пространстве, является плотность жидкости. Под плотностью жидкости понимается масса единицы объёма жидкости: где: М - масса жидкости, W - объём, занимаемый жидкостью.

В международной системе единиц СИ масса вещества измеряется в кг, объём жидко­го тела в м 3, тогда размерность плотности жидкости в системе единиц СИ - кг/м 3.

Плотность капельных жидкостей и газов зависит от температуры и давления. Зави­симость величины плотности жидкости и газа при температуре отличной от 20 °С опреде­ляется по формуле Д.И. Менделеева:

где: р и р20 - плотности жидкости (газа) при температурах соответственноT и Tо=20°С,

βi - коэффициент температурного расширения.

(чем больше разность температур, тем меньше плотность).

Исключительными особенностями обладает вода, максимальная плотность которой отмечается при 4 °С.

Под удельным весом жидкости (газа) понимается вес единицы объёма жидкости (газа):

Где - G вес жидкости (газа), W объем, занимаемый жидкостью (газом).

Связь между плотностью и удельным весом жидкости такая же как и между массой тела и её весом:

Размерность удельного веса жидкости в системе единиц СИ н/м 3, удельный вес чис­той воды составляет 9810 н/м3.

 

Уравнение состояния.

Основное уравнение Эйлера , где X,Y,Z – компоненты ускорения

Уравнение Эйлера для разных состояний имеет разные формы записи. Поскольку само уравнение получено для общего случая, то рассмотрим несколько случаев:

1) движение неустановившееся.

2) жидкость в покое. Следовательно, Ux = Uy = Uz = 0.

В таком случае уравнение Эйлера превращается в уравнение равномерной жидкости. Это уравнение также дифференциальное и является системой из трех уравнений;

3) жидкость невязкая. Для такой жидкости уравнение движения имеет вид

где Fl – проекция плотности распределения сил массы на направление, по которому направлена касательная к линии тока; dU/dt – ускорение частицы

Подставив U = dl/dt в (2) и учтя, что (∂U/∂l)U = 1/2(∂U2/∂l), получим уравнение.

Мы привели три формы уравнения Эйлера для трех частных случаев. Но это не предел. Главное – правильно определить уравнение состояния, которое содержало хотя бы один неизвестный параметр.

Уравнение Эйлера в сочетании с уравнением неразрывности может быть применено для любого случая.

Уравнение состояния в общем виде:

Таким образом, для решения многих гидродинамических задач оказывается достаточно уравнения Эйлера, уравнения неразрывности и уравнения состояния.

С помощью пяти уравнений легко находятся пять неизвестных: p, Ux, Uy, Uz, ρ.

Невязкую жидкость можно описать и другим уравнением

ρ=const - несжимаемые жидкости = капельные;

p/ρ=RT - газообразные.

Коэффициенты сжимаемости.

коэффициент сжимаемости жидкости:

где A – некоторая функция, возрастающая с температурой, p – внешнее давление и pT – давление, связанное с силами Ван-дер-Ваальса (a/V2) при температуре T.

Эта формула показывает, что коэффициент сжимаемости растет с повышением температуры и уменьшается с ростом давления. Среди всех жидкостей наибольшей сжимаемостью обладает жидкий гелий, у которого при давлении в несколько атмосфер коэффициент c равен . Коэффициент сжимаемости воды равен , а ртути – .

βp= - 1/V0 * ∆V/∆p; β – коэф. сжимаемости.

V=V0(1 – βp∆p) – для капельных жидкостей (несжимаемые жидкости);

K=1/βp – модуль объемных жидкостей.

βt=1/V0 * ∆V/∆t.

Примеры применения основных уравнений гидростатики.

Гидравлика — это наука о законах движения и равновесия жидкостей и способах приложения этих законов к решению конкретных технических задач. С гидравликой связаны отрасли науки и техники, занимающиеся созданием, исследованием и использованием различных гидравлических машин: насосов, турбин, гидропередач и гидропривода. Часто описание теории этих машин, их устройства и принципов работы объединяют в одном учебном предмете «Гидравлика и гидравлические машины».

Слово гидравлика произошло от греческого hydro (вода) и aulos (трубка). В настоящее время это понятие значительно расширилось: гидравлика занимается изучением любой жидкости, движущейся не только в трубах.

Первым научным трудом в области гидравлики принято считать трактат древнегреческого математика и механика Архимеда (ок. 287—212 до н. э.) «О плавающих телах», написанный примерно за 250 лет до н. э. Архимедом открыт закон о равновесии тела, погруженного в жидкость, который затем лег в основу теории плавания кораблей и их остойчивости.

Гидравлические машины предназначены для перемещения жидкостей, преобразования энергии потока жидкости в механическую энергию, а также передачи механической энергии от машины-двигателя к машине-орудию или преобразования различных видов движений и скоростей посредством жидкости. Соответственно гидравлические машины подразделяются на три основных класса: насосы, гидродвигатели и гидропривод. Они различаются по своим энергетическим и конструктивным признакам, но общим для них является то, что в качестве рабочего тела используется жидкость.

Наиболее многочисленный класс гидравлических машин составляют насосы. Всего насчитывается около 130 наименований насосов различных видов. Государственный стандарт определяет насос как машину для создания потока жидкой среды. Этот поток создается в результате силового воздействия вытеснителя на жидкость в рабочей камере насоса. По характеру силового воздействия насосы разделяют на динамические и объемные. К динамическим насосам относятся лопастные, центробежные, осевые, вихревые, струйные, к объемным — поршневые и плунжерные, диафрагменные, крыльчатые, роторные и др.

Гидравлические двигатели, как и насосы, подразделяются на машины динамического и объемного действия. К ним относятся гидравлические турбины, водяные колеса, гидроцилиндры и роторные гидромоторы. Гидродвигатели находят широкое применение в различных областях техники: в гидроэнергетике (гидравлические турбины, которые вырабатывают в стране около 20% электроэнергии), в нефтедобыче и горном деле (буровые установки, снабженные турбобурами), на транспорте (гидроцилиндры и гидромоторы) и т. д.

Основное уравнение гидростатики: P=P0+ρgh;

Используется в гидравлическом прессе.

Для измерения больших давлений применяют механические и пружинные манометры. Мембранные манометры. Для измерения быстроизменяющихся давлений и дистанционной передачи показаний используются электрические способы измерения давления.

 

Единицы измерения давления.

Единицей измерения давления используется техническая атмосфера, равная давлению в 1 кгс на 1 см². Техническая атмосфера обозначается ат или кгс/см². В качестве единиц измерения давления (разрежения) применяют также метр и миллиметр водяного столба и миллиметр ртутного столба.

Соотношения между этими единицами:

1 кгс/см² = 735,56 мм рт. ст. (при 0 °С);
1 кгс/см² = 10 м вод. ст. (при 4 °С);
1 кгс/см² = 10 000 мм вод. ст. = 10 000 кгс/м².

В науке, а иногда и в технике за единицу давления принимается физическая атмосфера, обозначаемая атм и равная давлению столба ртути высотой 760 мм рт. ст. при 0 °С.

Соотношения между технической и физической атмосферами следующие:

1 кгс/см² = 0,9678 атм;
1 атм = 1,0332 кгс/см² = 10,332 м вод. ст.

В системе СИ эта единица названа паскаль (Па).

Соотношения паскаля со старыми единицами

1 мм вод. ст. = 9,80665 Па ≈ 9,8 Па;
1 мм рт. ст. = 133,322 Па ≈ 133,3 Па;
1 кгс/см² = 98 066,5 Па;
1 атм = 101 325 Па.

Понятие центра давления.

Центр давления силы атмосферного давления p0S будет находиться в центре тяже­сти площадки, поскольку атмосферное давление передаётся на все точки жидкости одина­ково. Центр давления самой жидкости на площадку можно определить из теоремы о моменте равнодействующей силы. Момент равнодействующей

силы относительно оси ОХ будет равен сумме моментов составляющих сил относительно этой же оси.

, откуда где: - положение центра избыточного давления на вертикальной оси, - момент инерции площадки S относительно оси ОХ.

Центр давления (точка приложения равнодействующей силы избыточного давления) расположен всегда ниже центра тяжести площадки. В случаях, когда внешней действующей силой на свободную поверхность жидкости является сила атмосферного давления, то на стенку сосуда будут одновременно действовать две одинаковые по вели­чине и противоположные по направлению силы обусловленные атмосферным давлением (на внутреннюю и внешнюю стороны стенки). По этой причине реальной действующей несбалансированной силой остаётся сила избыточного давления.

 

Формула Пуазейля.

Течение Пуазейля - ламинарное течение жидкости через тонкие цилиндрические трубки. Описывается законом Пуазейля.

Окончательно потери напора при ламинарном движении жидкости в трубе:

Несколько преобразовав формулу для определения потерь напора, получим формулу Пуазейля:

Закон установившегося течения в вязкой несжимаемой жидкости в тонкой цилиндрической трубке круглого сечения. Сформулирован впервые ГоттфильхомХагеном в 1839 и вскоре повторно выведен Ж.Л. Пуазейлем в 1840. Согласно закону, секундный объемный расход жидкости пропорционален перепаду давления на единицу длины трубки. Закон Пуазейля применим только при ламинарном течении и при условии, что длина трубки превышает так называемую длину начального участка необходимую для развития ламинарного течения в трубке.

Свойства течения Пуазейля:

-Течение Пуазейля характеризуется параболическим распределением скорости по радиусу трубки.

-В каждом поперечном сечении трубки средняя скорость вдвое меньше максимальной скорости в этом сечении.

Из формулы Пуазейля видно, что потери напора при ламинарном движении пропорциональны первой степени скорости или расхода жидкости.

Формулой Пуазейля пользуются при расчетах показателей транспортировки жидкостей и газов в трубопроводах различного назначения. Ламинарный режим работы нефте- и газопроводов является наиболее выгодным в энергетическом отношении. Так, в частности, коэффициент трения при ламинарном режиме практически не зависит от шероховатости внутренней поверхности трубы (гладкие трубы).

 

Основные расчетные формулы.

Таблица для определения коэффициента гидравлического трения

Местные сопротивления

Местными сопротивлениями называются, в отличие от сопротивлений по длине, сосредоточенные на коротких участках трубопровода потери напора, вызванные местным отрывом вихрей, а также нарушением структуры потока. Эти процессы в значительной степени зависят от формы местных сопротивлений. Условно местные сопротивления можно разделить на несколько видов, представленных на рис. 4.13

D1v2

Внезапное расширение Внезапное сужение

Диффузор Конфузор

Диафрагма Закругление трубопровода

К местным сопротивлениям, в частности, относятся участки трубопроводов, имеющих переходы с одного диаметра на другой, колена, раструбы, тройники, крестовины, всякого рода запорные устройства и приспособления (краны, задвижки, вентили, клапаны), а также фильтры, сетки, специальные устройства входа и выхода к насосам (диффузоры, конфузоры).

Учет местных сопротивлений играет решающую роль при расчете гидравлически коротких трубопроводах, где величина потерь энергии на местных сопротивлениях сравнима с потерями по длине. Практически любое местное сопротивление приводит к

резкому изменению характера течения, сопровождаемого изменением местных скоростей как по величине, так и по направлению.

Нa практике для определения потерь энергии на местных сопротивлениях применяется формула Вейсбаха, выражающая потери в долях скоростного напора

, где неизвестный коэффициент пропорциональности ζ называется коэффициентом местного сопротивления.

В качестве скорости v принимается скорость на участке трубопровода, либо до него. От этого будет зависеть численное значение коэффициента ζ, поэтому необходимо специально оговаривать, по отношению к какой скорости вычислен коэффициент местного сопротивления. В общем случае коэффициент ζ зависит от геометрической формы местного сопротивления и числа Re.

Коэффициент ζ принимается постоянным для данного вида местного сопротивления. Однако экспериментальные исследования показали, что это условие соблюдается только при больших числах Рейнольдса (Re> 104), При небольших величинах Re значения коэффициента ζ существенно зависит от числа Рейнольдса, Справочные значения ζ относятся к случаю, когда местное сопротивление работает в условиях автомодельности по числу Re, т.е. не зависит от его числового значения. Значения ζ, приводимые в справочниках, следует считать ориентировочными. Для уточнения данных о конкретном местном сопротивлении необходимо провести экспериментальное исследование в требуемом диапазоне чисел Re. Однако, есть случаи, когда величина потерь энергии на местном сопротивлении может быть определена теоретически, например, при внезапном расширении потока.

Иногда местные сопротивления выражают через эквивалентную длину прямого участка трубопровода. Эквивалентной длиной называют такую длину прямого участка трубопровода данного диаметра, потери напора в котором при пропуске данного расхода равны рассматриваемым местным потерям.

, получаем ,или .

Эта формула позволяет весьма просто оценивать роль потерь удельной энергии в местном сопротивлении по сравнению с потерями по длине в общем балансе потерь.

 

Формула Вейсбаха.

Нa практике для определения потерь энергии на местных сопротивлениях применяется формула Вейсбаха, выражающая потери в долях скоростного напора

, где неизвестный коэффициент пропорциональности ζ называется коэффициентом местного сопротивления.

В качестве скорости v принимается скорость на участке трубопровода, либо до него. От этого будет зависеть численное значение коэффициента ζ, поэтому необходимо специально оговаривать, по отношению к какой скорости вычислен коэффициент местного сопротивления. В общем случае коэффициент ζ зависит от геометрической формы местного сопротивления и числа Re. (см. вопрос 45)

Теорема Борда.

Теорема Борда:потеря напора при внезапном расширении потока равна скоростному напору, определенному по разности скоростей

Используется при внезапном расширении потока (см.вопрос 46)

Эквивалентная длина

Иногда местные сопротивления выражают через эквивалентную длину прямого участка трубопровода. Эквивалентной длиной называют такую длину прямого участка трубопровода данного диаметра, потери напора в котором при пропуске данного расхода равны рассматриваемым местным потерям.

, получаем ,или .

Эта формула позволяет весьма просто оценивать роль потерь удельной энергии в местном сопротивлении по сравнению с потерями по длине в общем балансе потерь.

Типы трубопроводов.

Короткие (условно) – называются трубопроводы небольшой длинны, если местные потери совместимы с потерями на длине, или превышают потери по длине. Это – всасывающие трубы центробежных насосов, сифоны, сливные патрубки.

Длинные – называются трубопроводы, имеющие значительную протяженность, в которых наоборот, потери напора по длине являются основными, а местными потерями пренебрегают, или же оценивают их приближенно.

Учитывая гидравлическую схему работы длинных трубопроводов, их можно разделить также на простые и сложные.

Простые – трубопроводы одинакового по длине диаметра, состоящие из одной лишь линии или нитки.

Сложные - трубопроводы, в случае, если они имеют одно или несколько ответвлений, параллельные ветви и переменный по длине диаметр т.д

- параллельные соединения (рис. а) — (лупинг) когда к основной магистрали подключены параллельно её еще одна или несколько труб.

- разветвленные (рис. б) или тупиковые трубопроводы, в которых жидкость из магистрали не отнимается в боковые ответвления и обратно в магистраль не поступает.

- кольцевые (рис. в)– трубопроводы, представляющие собой замкнутую магистраль, питающую расположенные вдоль нее расходные пункты.

Задача первая.

Требуется определить напор в начале трубопровода, чтобы обеспечить заданный расход жидкости Q по трубопроводу с известными параметрами. Уравнение Бернулли, записанное для сечений на поверхности жидкости в резервуаре 1-1 и на выходе из трубы 2-2 (рис. 6.2, а) имеет вид:

Пренебрегая величиной в виду ее малости по сравнению с другими членами уравнения и обозначая разность высот , получим уравнение Бернулли в виде:

где - скорость движения жидкости в трубопроводе; - абсолютные значения

Начальный искомый напор равен сумме

По заданному расходу, характеристикам жидкости (р, η) и тру­бопровода (I, d, ∆) находят значения v и числа Re, а также значение относительной шероховатости ∆/d, определяют режим течения, об­ласть течения и выбирают соответствующую формулу для вычисле­ния коэффициента гидравлического сопротивления.

Аналогично решается задача, когда происходит перетекание жидкости из одного резервуара в другой (рис. 6.2, б). Для опреде­ления необходимого напора составляется уравнение Бернулли для сечений 1—1 и 2—2 на поверхностях жидкости в резервуарах. Получаем

Необходимый напор в начале трубопровода равен

Во многих случаях источником энергии для перекачки жидкости является насос. Для определения необходимого напора, создаваемо­го насосом в начале нагнетательной линии (рис. 6.2, в), составляется уравнение Бернулли для сечений 1—1 в начале этой линии и для се­чения 2—2 на свободной поверхности жидкости в резервуаре. При­нимая плоскость сравнения, проходящую через центр первого сечения, получаем

Из этого выражения может быть найдено давление , которое должен создавать насос. По найденному давлению и требуемому рас­ходу можно выбрать соответствующий насос для перекачки жидко­сти. Следует отметить, что в большинстве случаев скоростным напором можно пренебречь ввиду его малости по сравнению с други­ми членами уравнения Бернулли.

Задача вторая.

Определение расхода жидкости заданных при ос­тальных параметрах перекачки жидкости по трубопроводу. Рассмот­рим схему подачи жидкости (см. рис. 6.2, а) в трубопровод из напорной емкости. Необходимо определить расход жидкости, что равносильно нахождению скорости движения жидкости в трубопро­воде, которая входит в уравнение Бернулли.

Составим уравнение Бернулли для сечений 1 - 1 и 2—2, пренеб­регая скоростными напорами:

В этой формуле левая часть может быть определена по известным данным задачи. Значение скорости, а значит и расход можно было бы найти, если есть возможность найти члены, входящие в скобки выра­жения (6.3). В общем случае при режимах течения, отличающихся от квадратичного, коэффициенты гидравлического сопротивления λ и местного сопротивления ζ зависят от числа Re, а значит и от ν, а вид этой зависимости заранее неизвестен. Возможны два способа реше­ния такого типа задач: аналитический и графоаналитический.

Аналитически задача может быть решена в тех случаях, когда до начала расчета можно предсказать режим течения, а значит и вид за­висимости λ от Re. Так, если предположить, что режим течения будет ламинарным, то коэффициент гидравлического сопротивления оп­ределится по формуле λ = 64/Re, а значения ζ находят по справочни­ку. После подготовки значений этих коэффициентов в уравнение (6.3) находят скорость v, а затем расход. Аналогично решается зада­ча, если предполагаемый режим является квадратичным. В каждом из этих случаев требуется проверка предполагаемого режима тече­ния, т.е. необходимо, чтобы при ламинарном течении Re 500 d/∆

Если предположение не подтвердилось, то задачу решают мето­дом последовательных приближений, задавая в первом приближе­нии значение расхода , находят величину потерь и сравнива­ют с потерями напора для заданного трубопровода, равными

Если полученное значение оказалось больше чем , то расход уменьшают, а если меньше то следующее зна­чение , увеличивают, последовательно приближая получаемое значение к вычисленному .

Графоаналитический метод требует построения характеристики трубопровода Q-h (зависимости потерь напора от расхода) с помощью, которой определяют расход

Для построения характеристики трубопровода сдаются рядом про­извольных значений расхода жидкости и по ним опре­деляются потери напора в трубопроводе, как было изложено в первой задаче. Затем по выбранным расходам и соответствующим им поте­рям напора строим график зависимости Q- для данного трубопровода (рис. 6.3). Для найденных потерь по графику определяем соответствую­щий им расход жидкости . При реше­нии задачи методом последовательных приближений или графоаналитиче­ским требуется большое число вычис­лений, что наиболее рационально проводить с использованием ЭВМ.

Задача третья.

Определение мини­мально необходимого диаметра трубо­провода для обеспечения заданного рас­хода Q при известном напоре в трубоп­роводе . Эта задача может быть решена, как и в предыдущем случае ана­литически, методом последовательных приближений или графоаналитически.

В последних двух случаях задаются рядом значений диаметров и, зная Q, вычисляют потери напора . В методе последовательных приближений срав­нивают получаемые значения потерь напора с заданными по условию задачи,

добиваясь их близкого совпадения.

В графоаналитическом методе строится зависимость потерь напора от диаметра (рис. 6.4), а затем отложив по оси ординат предварительно вычисленные потери напора на оси абсцисс нахо­дят минимально необходимый диаметр . Если диаметр, определен­ный с этого графика, отсутствует в сортаменте, то берется ближайший большой диаметр.

Рассмотрим случай последовательного соединения труб. Если трубопровод состоит из нескольких последовательно соединенных участков труб различного диаметра и различной длины (рис. 6.5), то задачи решаются изложенными способами. При этом полные потери напора на всем протяжении трубопровода определяются как сумма потерь на трение на отдельных участках и местных сопротивлений:

, а расход жидкости на каждом из участков одинаков

Равенство (6.4) выражает собой принцип наложения потерь (принцип суперпозиции).

Принцип наложения может быть использован лишь в том случае, если расстояние между имеющимися местными сопротивлениями достаточно больше. Как показали опыты, если , где L – расстояние между местными сопротивлениями, d – диаметр трубопровода, то взаимное влияние местных сопротивлений мало и в этом случае можно воспользоваться соотношением:

Если требуется найти расход в последовательно соединенном трубопроводе при задаваемых значениях напора, то в качестве расчетного служит по-прежнему соотношение: .

Если при этом заранее не известны коэффициенты λ и ζ, зависящие от расхода, то — так же как в случае простого трубопровода — эту задачу надо решать ме­тодом последовательных приближений или графоа­налитическим способом. С этой целью при нескольких значениях расхода, задавае­мых произвольно, строим гидравлическую характери­стику для каждого участка, и совмещаем графики на одном чертеже (строим совме­стную характеристику), как это показано на схеме (рис. 6.6) для тру­бопровода, состоящего из двух участков I и II; при этом для получе­ния точек совместной характеристики для каждого значения расхода Q суммируются соответствующие ему значения потерь напора h на каждом из участков. Таким образом, расстояние от оси абсцисс до са­мой верхней кривой равняется сумме потерь на всей длине трубопрово­да и поскольку располагаемая величина напора известна — из графика можно определить соответствующий этому напору расход .

 

Расчет лупинга

Схема сложного трубопровода, называемая параллельным соединением труб, представлена на рис. 6.7. Магистральный трубопровод разветвляется в т.С на несколько параллельных линий труб различных длин и диаметров, сходящихся затем в точке магистрали. Обозначим расход в магистрали Q1, а в параллельных линиях через Q2,Q3,Q4. Очевидно, что

Составляя уравнение Бернулли для каждой из параллельных ветвей на участке CD, получим, что потери в каждой из линии равны разности напоров в точках C и D, а следовательно, потери напора равны между собой. В силу этого, в соответствии с зависимостью потерь

, получаем

Решение системы уравнений для трубопровода с заданными размерами удобно получить, используя графический метод. Для этого строят гидравлические характеристики всех труб, входящих в рассматриваемую схему. Характеристики представляют собой зависимость потерь напора от расхода, выраженную уравнением 6.6. Характеристики параллельно соединенных труб суммируются согласно уравнения 6.7 и6.8. Для этого необходимо на графике Q-h сложить абсциссы (расходы) каждой из кривых при одинаковых ординатах (напорах). В результате такого суммирования получим характеристику разветвленного участка, которую можно рассматривать как заменяющую параллельно соединенные трубы одной им эквивалентной.

Для определения задач на расход и напор, нужно на этом графике отложить известную величину и по лучим неизвестную ранее, путем перенесения кривой с известным числом.

 

Истечение жидкости из отверстий и насадков. Основные определения

Условия истечения:

- отверстия бывают большие и малые

- истечение может быть в атмосферу или пространство заполненной жидкостью.

- происходит с постоянным или переменным расходом.

- истечение через отверстие в тонкой стенки и истечение через насадки, т.е. короткие патрубки разной формы.

- отверстиями в тонких стенках называются отверстия, края которых имеют острую кромку, а толщина стенки не влияет на форму струи и условия истечения.

- отверстие будем называть малым, если его размеры не велики по сравнению с высотой, на котором в боковой поверхности находится свободная поверхность жидкости.

Пример явления гидравлического удара в нефтегазовом деле.

Гидравлический удар может быть использован как полезное явление. Так, например, явление гидравлического удара лежит в основе метода вибрационного воздействия на призабойную скважину с целью ее очистки, а так же используется в особом способе подъема жидкости, называемом гидравлическим тараном

 

Гипотеза сплошности.

«Рассматривать жидкие тела как совокупность отдельных молекул (в каждой отдельно) практически неподвижно, поэтому при изучении жидкости и газов (и вообще деформации тел) вводятся допущения, что эти тела заполняют пространство непрерывно, т.е. характеризуют определенными значениями параметра (плотность, температура, вязкость и тд.). при таком рассмотрении жидкое тело называют сплошной средой или континиумом. Жидкости. Все вещества в природе имеют молекулярное строение. По характеру молекулярных движений, а также по численным значениям межмолекулярных сил жидкости занимают промежуточное положение между газами и твердыми телами. Свойства жидкостей при высоких температурах и низких давлениях ближе к составам газов, а при низких температурах и высоких давлениях — к свойствам твердых тел. В газах рас


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.128 с.