Элементы теории приема и обработки информации — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Элементы теории приема и обработки информации

2017-11-16 314
Элементы теории приема и обработки информации 0.00 из 5.00 0 оценок
Заказать работу

Общие сведения о приеме сигналов

О передаваемых сигналах обычно имеются некоторые предварительные (априорные) сведения. Могут быть известными, например, частота несущей, вид модуляции и т. п. Сигнал, о котором заранее все известно, не несет информации, а абсолютно неизвестный сигнал нельзя было бы принять.

Известные параметры сигнала используются для лучшего отделения сигналов от помех. Чем больше мы знаем о сигнале, тем совершеннее могут быть методы приема. Параметры, в изменениях которых заключена переносимая информация, называются информационными. Изменения этих параметров в системах передачи информации заранее неизвестны.

В зависимости от вида и назначения системы передачи информации при приеме сигналов возникают следующие основные задачи:

• обнаружение сигналов;

• различение сигналов;

• восстановление сигналов.

При обнаружении сигналов задача сводится к получению ответа на вопрос, имеется на входе приемника сигнал или нет, точнее, имеется ли на входе аддитивная смесь сигнал плюс шум или только шум. С такой задачей мы обычно встречаемся в радиолокации, она также имеет место и в системах передачи дискретной информации. Если мы в состоянии обнаружить сигнал, то появляется возможность передачи информации с помощью двоичного кода. Наличие сигнала (посылка) будет соответствовать символу 1, отсутствие сигнала (пауза) – символу 0. Этот принцип используется в системах с пассивной паузой.

При передаче двух сигналов и возникает задача не обнаружения, а различения сигналов. Здесь необходимо дать ответ на вопрос: имеется ли на входе приемника сигнал или сигнал ? Ответ на этот вопрос определяется уже не свойствами каждого сигнала в отдельности, а их различием. Сигналы могут отличаться один от другого своими параметрами. Очевидно, нужно стремиться к тому, чтобы различие было наибольшим и устойчивым к воздействию помех. Случай обнаружения может рассматриваться как вырожденный случай различия двух сигналов, когда один из них тождественно равен нулю.

Рассмотрим некоторые из распространенных видов обработки сигналов в системах передачи информации.

 

Метод накопления

 

Одним из эффективных и широко применяемых в различных вариантах методов борьбы с помехами является метод накопления. Сущность метода состоит в том, что сигнал или его элементы многократно повторяются. На приеме отдельные образцы сигнала сличаются (обычно суммируются), и так как различные образцы по-разному искажаются помехой в силу независимости последних, то можно восстановить переданный сигнал с большой достоверностью.

В простейшей форме метод накопления часто применяется при телефонном разговоре в условиях плохой слышимости, когда переспрашивают и повторяют одно и то же слово по несколько раз. В случае двоичного кода каждая кодовая комбинация передается по несколько раз. Если вероятность сбоя символов 1 и 0 одинакова, то на приеме решение выносится «по большинству», т. е. воспроизводится символ 1 на данной позиции, когда их число на этой позиции больше числа символов 0, и наоборот, воспроизводится 0, когда число «нулей» больше числа «единиц».

Пример

Переданная комбинация 01001

1-я принятая комбинация 00001

2-я принятая комбинация 11010

3-я принятая комбинация 01101

Воспроизведенная комбинация 01001

Заметим, что можно было бы получить образцов сигнала не путем их повторения во времени, а путем передачи по независимым каналам, разделенным по частоте, или каким-либо другим способом.

Существуют и другие разновидности метода накопления. К ним, в частности, относится метод синхронного накопления, когда на протяжении посылки берется не один отсчет, а несколько. На приеме эти отсчеты суммируются в накопителе.

Пусть отдельные отсчеты принятого сигнала:

 

. (5.1)

 

Тогда суммы отсчетов с учетом (5.1):

 

. (5.2)

 

Величина в выражении (5.2) представляет собой полезный сигнал на выходе приемника. Случайная величина представляет собой помеху. Отношение сигнала к помехе на выходе приемника равно:

. (5.3)

 

Заметим, что здесь в отличие от принятых обозначений в главе 3 под отношением сигнала к помехе понимается отношение их мощностей.

Мы полагаем, что не коррелированны и имеют одинаковое распределение, – отношение сигнала к помехе на входе приемника, – дисперсия случайного процесса.

Таким образом, при описанных условиях накопление отсчетов сигнала (5.3) позволяет увеличить отношение сигнала к помехе на выходе приемника в раз. Суть дела сводится к тому, что мощность сигнала при суммировании растет пропорционально (складываются напряжения), а мощность помехи – пропорционально (суммируются мощности). Поэтому отношение сигнала к помехе увеличивается в раз, если отсчеты помехи независимы. При наличии корреляции между значениями помехи этот выигрыш будет меньше.

Метод накопления можно осуществить, беря не сумму отсчетов , а интеграл непрерывно изменяющейся функции за время , равное длительности сигнала:

 

. (5.4)

 

Если спектр помехи равномерен в достаточно широкой полосе частот , т. е. интервал корреляции помехи , то можно показать, что отношение сигнала к помехе на выходе интегратора

 

. (5.5)

 

Из выражений (5.4) и (5.5) следует, что выигрыш, получаемый при интегрировании, тем больше, чем больше отношение (чем меньше помеха коррелированна с сигналом). Описанный способ приема называется интегральным.

 

Согласованный фильтр

Существует большой класс задач, в которых требуется обнаружить сигнал, если форма его известна. К таким сигналам, в первую очередь, относятся дискретные двоичные сигналы. В этих случаях важным параметром, характеризующим качество обнаружения, является отношение сигнала к помехе. Линейный фильтр, максимизирующий это отношение, называется оптимальным согласованным фильтром.

Пусть на входе фильтра действует сумма сигнала и помехи , т. е. колебание

 

.

 

Полезный сигнал рассматривается не как случайный процесс, а как функция известной формы со спектральной плотностью

,

 

где и – амплитудный и фазовый спектры сигнала. Помеху будем считать стационарным случайным процессом типа белого шума с равномерной двухсторонней спектральной плотностью

 

.

 

Коэффициент передачи линейного фильтра запишем в виде

 

.

 

Сигнал на выходе фильтра, очевидно, равен сумме полезного сигнала и помехи :

 

.

 

Полезный сигнал на выходе можно записать в виде

 

.

 

Пиковая мощность сигнала в некоторый момент будет равна:

,

а мощность помехи

.

Тогда превышение сигнала над помехой в момент времени будет определяться следующим выражением:

. (5.6)

Необходимо найти, каким должен быть коэффициент передачи фильтра, чтобы отношение сигнала к помехе на его выходе было максимальным. Известно неравенство Буняковского - Шварца:

 

. (5.7)

 

На основании этого неравенства получаем, что при любой характеристике фильтра отношение сигнала к помехе не может превосходить максимального значения:

 

, (5.8)

 

где – полная энергия сигнала. Указанная в равенстве (5.8) максимальная величина достигается в том случае, когда коэффициент передачи фильтра имеет следующее выражение:

 

, (5.9)

 

где – функция, комплексно сопряженная со спектром сигнала ; – произвольная постоянная.

Выражение (5.9) можно записать в виде двух равенств:

 

, (5.10)

 

из которых следует, что амплитудно-частотная характеристика согласованного фильтра с точностью до постоянного множителя совпадает с амплитудным спектром сигнала, а фазочастотная характеристика определяется фазовым спектром сигнала и линейной функцией частоты . Таким образом, частотная характеристика согласованного фильтра полностью определяется спектром сигнала, "согласована" с ним.

Фаза сигнала на выходе согласованного фильтра с учетом (5.10) будет равна:

 

.

 

При , т.е. в момент , все гармонические составляющие сигнала имеют одинаковую фазу и складываются арифметически, образуя в этот момент пик сигнала на выходе фильтра. Спектральные же составляющие помехи на выходе фильтра имеют случайную фазу. Этим и объясняется доказанное выше положение о том, что согласованный фильтр максимизирует отношение сигнала к помехе на выходе.

В качестве примера рассмотрим построение согласованного фильтра для прямоугольного импульса, заданного в виде:

 

 

Спектр такого импульса, как известно,

.

На основании (5.9) коэффициент передачи согласованного фильтра будет

. (5.11)

Известно, что умножение на в частотной области соответствует интегрированию в пределах от до во временной области, а умножение на соответствует задержке сигнала на время .

Следовательно, фильтр с коэффициентом передачи (5.11) состоит из интегратора И, включающего в себя дополнительно масштабирующий усилитель с коэффициентом усиления , линии задержки на время Т с коэффициентом передачи и вычитающего устройства В (рис. 5.1, а).

 
 

 

 


Рис. 5.1. Согласованный фильтр для прямоугольного импульса (а), сигнал на его входе (б) и выходе (в)

 

Сигнал на выходе фильтра имеет форму равнобедренного треугольника (рис. 5.1, в) с основанием и высотой, равной энергии сигнала сА2Т, т. е.:

 

В ряде случаев согласованные фильтры оказываются практически труднореализуемыми. Поэтому часто применяют фильтры, которые согласованы с сигналом только по полосе (квазиоптимальные фильтры). Оптимальная полоса для различных импульсов различна и может быть вычислена без особых трудностей. Так, для фильтра с прямоугольной частотной характеристикой, на который воздействует радиоимпульс прямоугольной формы длительностью , оптимальная полоса равна . Можно показать, что отношение сигнала к помехе на выходе квазиоптимального фильтра по сравнению с согласованным фильтром уменьшается на величину порядка.

 

Оптимальная фильтрация

Источник дискретных сообщений характеризуется совокупностью возможных элементов сообщения и вероятностями появления этих элементов на выходе источника .

В передающем устройстве сообщение преобразовывается в сигнал таким образом, что каждому элементу соответствует определенный сигнал. Обозначим эти сигналы через , а их вероятности на выходе передатчиков (априорные вероятности) соответственно через . Очевидно, априорные вероятности сигналов равны априорным вероятностям соответствующих сообщений . В процессе передачи на сигнал накладывается помеха. Пусть эта помеха имеет равномерный спектр мощности с интенсивностью . Тогда сигнал на входе можно представить как сумму переданного сигнала и помехи :

 

.

 

В случае, когда априорные вероятности сигналов одинаковы: , можно сформулировать условие оптимального приема (критерий Котельникова):

 

 

Отсюда следует, что при равновероятных сигналах оптимальный приемник воспроизводит сообщение, соответствующее тому переданному сигналу, который имеет наименьшее среднеквадратичное отклонение от принятого сигнала. Если все возможные сигналы равновероятны и имеют одинаковую энергию, оптимальный приемник воспроизводит сообщение, соответствующее тому переданному сигналу, взаимная корреляция которого с принятым сигналом максимальна.

 

6. ЭЛЕМЕНТЫ ТЕОРИИ ИНФОРМАЦИИ

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.