Использование метода наименьших квадратов в нелинейных задачах — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Использование метода наименьших квадратов в нелинейных задачах

2017-09-28 275
Использование метода наименьших квадратов в нелинейных задачах 0.00 из 5.00 0 оценок
Заказать работу

Как и Фильтр Калмана, метод наименьших квадратов может быть применен к линеаризованным моделям измерений. Пусть исходная нелинейная модель измерений имеет вид:

.

Тогда в результате линеаризации этой модели формально получим:

.

Откуда, полагая и вводя обозначения:

; ; ,

получим результирующее соотношение:

.

Отсюда соотношение для построения оценки фазового вектора методом наименьших квадратов примет окончательный вид:

Построение матрицы Коши

В задачах построения оценок методами статистической обработки измерений часто встречается задача построения матрицы Коши. Эта матрица связывает фазовые векторы системы, отнесенные к разным моментам времени, в собственном движении.

Ограничимся в настоящем разделе рассмотрением вопросов, связанных с построением матрицы Коши для модели эволюции, записанной в виде системы обыкновенных дифференциальных уравнений (линейных или нелинейных).

Для линейной системы имеем:

.

Тогда дифференциальное уравнение для матрицы Коши примет вид:

.

Интегрируя его на интервале времени от до , с единичной матрицей соответствующей размерности в качестве начальных условий, получим матрицу Коши, связывающую фазовые векторы, отнесенные к моментам времени и :

.

В случае, когда модель эволюции фазового вектора представлена нелинейной системой дифференциальных уравнений общего вида:

,

матрица Коши может быть построена с использованием приведенных выше соотношений для линеаризованной системы:

,

где использованы следующие обозначения для матриц пропорциональности, построенных в окрестности опорной траектории , :

; .

Моделирование измерений

Проблема возникает в случае, когда, например, оценивая потенциально достижимую точность метода в некоторой задаче, Вы не располагаете какими-либо результатами измерениями. В этом случае результаты измерений требуется смоделировать. Особенность моделирования результатов измерений состоит в том, что модели движения и измерений, используемые для этой цели могут не совпадать с теми моделями, которые Вы будете использовать в ходе построения оценок с использованием того или иного метода фильтрации.

Более того, рекомендуется, чтобы модели, используемые для построения результатов измерений, были максимально точными, наилучшим образом приближенными к физическим процессам и закономерностям, наблюдающимся в природе.

В качестве начальных условий для моделирования эволюции фазового вектора динамической системы должны использоваться истинные значения координат этого вектора. Кроме этого места истинные значения координат фазового вектора системы не должны использоваться более нигде[7].

Численные методы

Специальные функции


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.