Основные направления развития лазерной технологии. — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Основные направления развития лазерной технологии.

2017-08-11 98
Основные направления развития лазерной технологии. 0.00 из 5.00 0 оценок
Заказать работу

Высокая интенсивность лазерного излучения открывает широкие возможности его технологических применений в качестве инструмента для локальной термообработки. Лазерный луч — это уникальный тепловой источник, способный нагреть облучаемый участок детали до высоких температур за столь малое время, в течение которого тепло практически не успевает «растекаться». Нагреваемый участок может быть при этом размягчен, рекристаллизован, расплавлен, наконец, его можно испарить. Дозируя тепловые нагрузки путем регулировки мощности и продолжительности лазерного облучения, можно обеспечить практически любой температурный режим и реализовать различные виды термообработки. Лазерный нагрев используется для поверхностной закалки и легирования металлов, для плавления при сварке, для плавления и испарения с выбросом паров при резке и сверлении. Лазерные методы обеспечивают возможность дистанционной обработки, возможность обработки труднодоступных участков готовых деталей, селективность воздействия (например, при термообработке можно упрочнять только те участки поверхности, которые подвергаются непосредственным механическим нагрузкам, работают на истирание и т. п.), лазерный луч не загрязняет обрабатываемой поверхности и, наконец, он дает возможность прецизионной резки и сверления материалов, вообще не поддающихся механической обработке,— композитов, сверхтвердых сплавов, изделий порошковой металлургии, керамики и др. Единственным аналогом лазерного луча в этом аспекте является интенсивный электронный пучок, однако лазерный луч имеет два важных преимущества: при его использовании не требуется вакуумирование обрабатываемой детали и не требуется создание мощной биологической защиты для обслуживающего персонала.

Преимущества лазерной сварки

- Важнейшим преимуществом лазерной сварки твердотельными лазерами является возможность очень точной дозировки энергии, поэтому удается обеспечить получение качественных соединений при изготовлении очень мелких деталей.

- Для мощных газовых лазеров преимуществом является получение большой глубины проплавления при малой ширине шва. Это позволяет уменьшить зону термического влияния, сократить сварочные деформации и напряжения.

- Кроме того, лазерная сварка обладает рядом преимуществ, не присущих другим способам сварки.

- Лазер может быть расположен на достаточно большом удалении от места сварки, что в ряде случаев дает существенный экономический эффект.

- Легкость управления лазерным лучом с помощью зеркал и волоконной оптики позволяет осуществлять сварку в труднодоступных, иногда не находящихся в пределах прямой видимости местах. Возможна также лазерная сварка нескольких деталей от одного лазера расщепленным с помощью призм лучом.

Недостатки технологии

- Недостатками лазерной сварки являются высокая сложность и стоимость оборудования, низкий КПД лазеров. По мере развития лазерной техники эти недостатки устраняются.

 

Техническая характеристика лазеров и их конструкция СО2

Типичная конструкция газового лазера - это заполненная газом трубка, ограниченная с двух сторон строго параллельными зеркалами: непрозрачным и полупрозрачным. В результате электрического разряда между введенными в трубку электродами возникают быстрые электроны, которые возбуждают газовые молекулы. Возвращаясь в стабильное состояние, эти молекулы образуют кванты света так же, как и в твердотельном лазере. Газовые лазеры могут работать в непрерывном режиме.

1 - разрядная трубка; 2 - непрозрачное зеркало; 3 - источник питания; 4 - вакуумный насос; 5 - полупрозрачное зеркало

Отличаются высокой мощностью, монохроматичностью, а также узкой направленностью излучения. Работают в непрерывном и импульсном режимах.

Мо́нохромати́ческое излуче́ние— электромагнитное излучение, обладающее очень малым разбросом частот

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.