Экологическая сторона металлургии. — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Экологическая сторона металлургии.

2017-06-12 72
Экологическая сторона металлургии. 0.00 из 5.00 0 оценок
Заказать работу

Производство металлов вызывает много экологических проблем. В атмосферу при несоблюдении определенных норм выделяются оксиды серы, пыль и другие вредные примеси. В настоящее время стараются свести к минимуму отрицательное влияние производства на окружающую среду.

Что касается экологической стороны вопроса, то самым чистым можно признать электрохимический способ получения металлов, так как при его проведении в атмосферу не выделяется никаких веществ. В остальном же металлургия является одним из самых вредных для природы производств, поэтому в современном мире уделяется большое внимание проблеме создания безотходного оборудования.

Уже сейчас многие заводы отказались от использования мартеновских печей в пользу более современных электрических моделей. Они потребляют гораздо больше энергии, но не выбрасывают в атмосферу продукты сгорания топлива. Очень важной является и вторичная переработка металлов. Для этого во всех странах оборудованы специальные пункты приема, в которых можно сдавать вышедшие из эксплуатации детали из черных и цветных металлов, которые затем отправятся на переработку. В будущем из них изготовят новую продукцию, которую можно будет использовать в соответствии с назначением.

Безотходная технология − технология, подразумевающая наиболее рациональное использование природных ресурсов и энергии в производстве, обеспечивающее защиту окружающей среды.

Безотходная технология − принцип организации производства вообще, подразумевающий использование сырья и энергии в замкнутом цикле. Замкнутый цикл означает цепочку первичное сырьё − производство − потребление − вторичное сырьё.

Как известно, при обжиге руд цветных металлов образуются газы, содержащие оксид серы (IV) – SO2. Этот газ засоряет окружающую среду, но его можно улавливать и использовать для производства серной кислоты. В результате можно не только предотвратить загрязнение окружающей среды, но и получить дополнительную прибыль. Так, например, при получении 1 т меди можно получить примерно 10 т серной кислоты.

Сплавы.

Сплавы − это макроскопические однородные системы, состоящие из двух или более металлов (реже − металлов и неметаллов) с характерными металлическими свойствами. В более широком смысле сплавы-любые однородные системы, полученные сплавлением металлов, неметаллов, неорганических соединений и т.д. Многие сплавы (например, бронза, сталь, чугун) были известны в глубокой древности и уже тогда имели обширное практическое применение. Техническое значение металлических сплавов объясняется тем, что многие их свойства (прочность, твердость, электрическое сопротивление) гораздо выше, чем у составляющих их чистых металлов.

Называют сплавы исходя из названия элемента, содержащегося в них в наибольшем количестве (основной элемент, основа), например сплавы железа, сплавы алюминия. Элементы, вводимые в сплавы для улучшения их свойств, называют легирующими, а сам процесс − легированием.

По характеру металла − основы различают черные сплавы (основа − Fe), цветные сплавы (основа − цветные металлы), сплавы редких металлов, сплавы радиоактивных металлов.

По числу компонентов сплавы делят на двойные, тройные и т.д..

По структуре сплавы делят на гомогенные (однородные) и гетерогенные (смеси), состоящие из нескольких фаз (последние могут быть стабильными и метастабильными).

По характерным свойствам сплавы делят на тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие, сплавы со специальными свойствами и др.

По технологии производства выделяют литейные (для изготовления деталей методом литья) и деформируемые (подвергаемые ковке, штамповке, прокатке, прессованию и др. видам обработки давлением).

Основной метод получения сплавов − смешение и расплавление составляющих его компонентов с послед. затвердеванием в кристаллическом или аморфном состоянии.

Сплавы можно получать и без расплавления основного компонента – методами порошковой металлургии.

Другие способы получения – осаждение из растворов и газовой фазы, диффузионное насыщение одного компонента другим, совместное электрохимическое осаждение из растворов и др. Для получения сплавов в виде тонких пленок и покрытий используют осаждение из газовой фазы, напыление, конденсацию паров, электролиз.

По назначению сплавы разделяют на большое число видов.

Конструкционные сплавы предназначены для изготовления деталей машин, строит. конструкций и др. сооружений. Такие сплавы обладают целым комплексом свойств, обеспечивающих надежную и долговечную работу в условиях высоких механических напряжений – высокой прочностью, ударной вязкостью, хорошим сопротивлением к усталости, динамическим и ударным нагрузкам. Основную (по объему) часть выпускаемых во всем мире конструкционных сплавов составляют различные марки сталей и чугунов. В авиационной, судостроительной и космической технике, где кроме перечисленных выше свойств необходимо учитывать плотность материала, находят применение конструкционные сплавы на основе Аl и Ti, которые по ударной прочности во многих случаях не уступают, а иногда даже превосходят наиболее прочные стали.

Из инструментальных сплавов изготовляют главным образом измерительные и металлообрабатывающие инструменты. Первые изготовляют в основном из углеродистых или легированных сталей, вторые − из быстрорежущих, штамповых сталей и твердых сплавов.

Изделия из быстрорежущих и штамповых сталей получают традиционными методами литья с последующей механической и термической обработкой. Инструменты из твердых сплавов обладают более высокой твердостью, чем инструменты из стали, и способны работать при более высоких температурах и с более высокой производительностью.

В группу электротехнических входят сплавы с особыми магнитными и электрическими свойствами.

К сплавам с особыми электрическими свойствами относят: электроконтактные сплавы (размыкающие, скользящие); с высоким, слабо зависящим от температуры, электрическим сопротивлением; термоэлектродные; резисторные; сплавы для нагревательных элементов и др. Размыкающие контакты должны обладать высокой тепло- и электропроводностью, эрозионной стойкостью, сопротивлением свариваемости. Их изготовляют из сплавов благородных металлов, сплавов систем W-Ni-Cu, W-Ni-Ag, Ag-CuO (CdO). Скользящие контакты, кроме того, должны обладать низким коэффициентом трения и высокой износостойкостью. Для их изготовления используют сплавы на основе систем Сu-С, Ag-Ni, Ag-Pd с добавками MoS2, Sb и др., получаемые методами порошковой металлургии. Сплавы с высоким электрическим сопротивлением и малым температурным коэффициентом для реостатов, измерительных и других приборов изготовляют на основе систем Cu-Ni (константан), Cu-Mn-Ni (манганин). Сплавы для нагревательных элементов обладают высоким электрическим сопротивлением, достаточной прочностью и стойкостью против окисления при высоких температурах, например, сплавы, содержащие Ni и Сr (нихромы), Fe, Сr и А1 (фехраль), Ni и Сг (хромаль). Для изготовления термопар используют сплавы на основе систем Pt-Ph, Ni-Cr (хромель), Ni-Аl-Мn-Si (алюмель), Cu-Ni (копель).

Триботехнические сплавы, предназначенные для работы в узлах трения, подразделяют на фрикционные (увеличивающие трение) и антифрикционные (снижающие трение). Первые должны обладать высокими и стабильными в широком интервале температур коэффициентами трения, износостойкостью, теплопроводностью, сопротивлением схватыванию, достаточной прочностью; вторые − низким коэффициентом трения, высокой износостойкостью. Фрикционные сплавы получают в основном методами порошковой металлургии на основе Fe и Си с добавками асбеста, оксидов и карбидов (увеличивающих трение), Pb, Sn, графита, сульфидов, солей (улучшающих износ и предотвращающих схватывание). Антифрикционные сплавы- чугуны, бронзы и баббиты-сплавы на основе Pb, Sn, Zn или Аl. Методами порошковой металлургии получают антифрикционные сплавы на основе системы Fe−графит и бронза−графит.

Большую группу составляют сплавы со специфическими свойствами:

· Тугоплавкие сплавы используют для нагревательных элементов и др. деталей, работающих при т-ре > 1500°С, изготовляют на основе переходных металлов IV-VI групп, а также тугоплавких карбидов, нитридов, силицидов, боридов различных металлов.

· Легкоплавкие сплавы на основе Sn, Pb, Cd, Bi (например, сплав Вуда), Та, Hg, Zn имеют температуры плавления ниже отдельных компонентов и используются в качестве предохранительных вставок, пробок, легкоплавких припоев.

· Пористые сплавы создают в основном методами порошковой металлургии; сплавы со сквозными порами используют в качестве фильтров, самосмазывающихся подшипников, пламегасителей; с изолированными порами (пеноматериалы) − в качестве теплозащиты.

· Сплавы с постоянным коэффициентом термического расширения,

· Сплавы с особыми ядерными свойствами используют в атомной технике: высоким или низким сечением захвата (вероятностью поглощения) нейтронов, g-лучей; способностью замедлять и отражать нейтроны; способностью передавать тепло, выделившееся в результате ядерных реакций (например, сплавы для твэлов). Для их изготовления используют актиноиды Li, Be, В, С, Zr, Ag, Cd, In, Gd, Er; Sm, Hf, W, Pb и др. элементы.

· Сплавы с эффектом памяти формы например, на основе никелида Ti: изделия определенной формы из таких сплавов, будучи многократно деформированы, после нагрева восстанавливают свою первоначальную форму.

 

Распространение сплавов в современной промышленности

Следует заметить, что все металлы, которые интенсивно используются современной промышленностью, являются именно сплавами. Так, более 90% всего получаемого в мире железа идет на изготовление чугунов и различных сталей. Объясняется такой подход к делу тем, что сплавы металлов в большинстве случаев демонстрируют лучшие свойства, нежели чем их «прародители». Так, предел текучести чистого алюминия составляет всего лишь 35 Мпа. А вот если в него добавить 1,6% меди, магния и цинка в соотношении 2,5% и 5,6% соответственно, то этот показатель может легко превысить даже 500 МПа. Кроме прочего, можно значительно улучшить свойства электропроводности, теплопроводности или другие. В сплавах строение кристаллической решетки изменяется, что и позволяет приобретать им прочие свойства. Проще говоря, количество такого рода материалов в наши дни велико, но оно постоянно продолжает расти.

Основные классификационные сведения

Стали

Все соединения железа, содержащие до 2% углерода, называются сталями. Если в составе имеется хром, ванадий или молибден, то их называют легированными. Количество сталей на сегодняшний день таково, что одно их перечисление могло бы занять не слишком тонкую книгу. Если в материале менее 0,25% углерода, то он используется в каких-то технических конструкциях. Если же в стали более 0,55% углерода, то она идеально подходит для производства различных высококачественных режущих инструментов, в том числе резцов для токарных станков, сверл и хирургических принадлежностей. Но если речь идет о приспособлениях, которые применяются для быстрой резки, то на их производство идет исключительно легированная сталь.

Чугун

Если в сплаве железа содержится более 3-4% углерода, то он называется чугуном. Кроме того, его важным элементом является кремний. Из чугуна изготавливается масса деталей и готовых изделий. К примеру, блоки двигателей для автомобилей. В случае качественно сделанной отливки без полостей и каверн, изделие обладает впечатляющей механической прочностью.

Медные сплавы

Чаще всего под этим термином понимаются разные сорта латуни. Это такие сплавы меди, в которых содержится от 5 до 45% цинка. Если его содержание колеблется в пределах 5-20%, то это красная латунь (томпак). Если же в материале содержится уже 20–36% Zn, то это – желтая латунь. Эти материалы идеальны в случае необходимости производства и формовки мелких деталей. Малоизвестно, но сплав меди с кремнием носит название кремнистой бронзы и обладает большой механической прочностью. Практически тем же характеризуется фосфористая разновидность (к меди прибавляется 5% олова и некоторое количество фосфора). Как и в прошлом случае, отличается высокой прочностью и пружинистыми качествами, а потому идеальна для изготовления мембран и разного рода пружин.

Сплавы свинца

Вообще цветные металлы и сплавы – неразделимо связанные понятия, так как с древнейших времен люди умели выплавлять многосоставные материалы, которые с успехом использовали в военном и мирном деле. Особенно это относится к свинцу, из сплавов которого еще римляне делали водопроводы и канализации. Наиболее известен в настоящее время обычный припой, который изготавливается из одной части свинца и двух частей олова. Как видно из названия, он используется для пайки деталей. Применяется в радиотехнике и прочих технических отраслях. Из сурьмы и свинца делают сплавы, которые используются для изготовления оболочек разного рода кабелей.

Давно известно, что соединения этого металла с кадмием, висмутом или оловом могут плавиться приблизительно при температуре 70 градусов по шкале Цельсия. Именно поэтому сегодня из них делают различные предохранители в системах автоматического пожаротушения. Как ни странно, но свинец издавна был известен поварам и рестораторам, так как из него нередко делали столовую посуду и приборы. Сплав, который использовался для этого, называется пьютер. В его состав входит приблизительно 85–90% олова. Оставшиеся 10-15% как раз-таки занимает свинец (стандартный сплав двух металлов). Баббиты − это также соединения на основе свинца, в состав которых также входит олово, а также мышьяк и сурьму. Эти сплавы весьма ядовиты, но из-за некоторых особых качеств их активно используют в подшипниковой отрасли промышленности.

Легкие сплавы

В последние годы современной промышленности требуется огромное количество легких сплавов, которые обладают повышенной механической прочностью, а также устойчивостью к воздействиям неблагоприятных факторов внешней среды и высокой температуре. Чаще всего для их производства используется алюминий, бериллий, а также магний. Особенно востребованы соединения на основе алюминия и магния, так как сфера их возможного применения чрезвычайно широка.

Сплавы на основе алюминия

Сплавы алюминия активно применяются в авиационной, космической, военной, научно-инженерной и прочих отраслях. Без алюминия невозможно представить себе производителей современной бытовой и мобильной техники, так как корпуса из этого металла все чаще используются современными флагманами этих отраслей. Делятся сплавы алюминия сразу на три большие группы:

· Литейные (Al – Si). Особенно широко они распространены в автомобилестроении и военной промышленности.

· Сплавы, предназначенные для литья под давлением (Al – Mg).

· Соединения повышенной прочности, самозакаливающиеся (Al – Cu).

Достоинства и недостатки этого материала

Многие сплавы из этого материала экономичны, сравнительно недороги и весьма долговечны, так как не поддаются коррозии. Отличаются высокой прочностью в условиях экстремально низких температур (аэрокосмические отрасли) и весьма простым процессом обработки. Для их формовки не требуется особенно сложного и дорогостоящего оборудования, так как они сравнительно пластичные и вязкие (смотрите таблицу с характеристиками). Увы, но есть у них и свои недостатки. Так, при температурах выше 175 °С механические свойства алюминия и сплавов на его основе начинают стремительно ухудшаться. Зато благодаря наличию амальгамы на их поверхности (защитной пленки из гидроксида алюминия) они обладают выдающейся устойчивостью к действию агрессивных химических сред, в том числе кислот и щелочей. Они имеют отличную электропроводность и теплопроводность, немагнитны. Считается, что они абсолютно безвредны для здоровья человека, а потому их можно использовать для производства пищевой посуды и столовых принадлежностей. Впрочем, последние исследователи медиков все же говорят о том, что соединения алюминия в некоторых случаях могут провоцировать развитие болезни Альцгеймера. Военные полюбили эти материалы за то, что они не дают искр даже при резких механических воздействиях и ударах. Кроме того, они отлично поглощают ударные нагрузки. Проще говоря, некоторые эти сплавы металлов (состав которых чаще всего засекречен) активно используются для производства легкой брони для оснащения ей разнообразных БТР, БМП, БРДМ и прочей техники. Благодаря всем этим свойствам сплавы на основе повсеместно используют для производства поршней для двигателей внутреннего сгорания, а также в производстве строительных конструкций (устойчивость к коррозии). Широко используется алюминий и материалы на его основе в производстве отражателей для светотехнических представлений, электропроводки, а также для изготовления корпусов разнообразной техники (не намагничивается). Важно заметить, что даже в теоретически чистом алюминии порой содержится значительная примесь железа. Оно может способствовать более высокой механической прочности материала, но его присутствие делает сплав на основе алюминия сильно подверженным коррозионным процессам. Кроме того, сплав в значительной степени утрачивает свою пластичность, что также не слишком хорошо в большинстве случаев. Ослабить негативное действие примесей железа помогает кобальт, хром или марганец. Если же в состав сплава входит литий, то получается весьма прочный и упругий материал. Неудивительно, что такое соединение пользуется большой популярностью в авиакосмической промышленности. Увы, но сплавы лития с алюминием имеют неприятное свойство, которое опять-таки выражается в плохой пластичности.

Сплавы магния

Сплавы магния имеют крайне невысокую массу, а также характеризуются весьма впечатляющей прочностью. Кроме того, именно эти материалы великолепно подходят для литейной промышленности, а заготовки прекрасно поддаются токарной и фрезеровочной обработке. А потому их активно используют в производстве ракет и авиационных турбин, корпусов приборов, дисков автомобильных колес, а также некоторых сортов броневой стали. Некоторые разновидности этих сплавов отличаются великолепными показателями вязкостного демпфирования, а потому они идут на производство деталей и конструкций, которым приходится работать в условиях экстремально высокого уровня вибраций.

Достоинства и недостатки магниевых сплавов

Они довольно мягкие, сравнительно неплохо сопротивляются износу, но отличаются не слишком впечатляющей пластичностью. Зато они отличаются прекрасной приспособленностью к формовке в условиях высоких температур, отлично приспособлены для соединения с использованием всех существующих разновидностей сварок, а также могут быть соединены посредством болтовых соединений, клепки и даже склеивания. Увы, но все эти сплавы не отличаются особенной стойкостью к воздействию кислот и щелочей. Крайне негативно на них воздействует долгое пребывание в морской воде. Впрочем, магниевые сплавы на удивление стабильны в условиях воздушной среды, так что многими их недостатками можно пренебречь. Если же требуется надежно защитить такие детали от действия коррозии, то применяют нанесение хромового покрытия, анодирование или подобные же методы. Их можно плакировать при помощи никеля, меди или хрома, предварительно погружая в расплав химически чистого цинка. При такой обработке резко возрастают показатели их прочности и устойчивости к истиранию. Нужно напомнить, что магний является довольно-таки активным с химической точки зрения металлом, а потому при работе с ним необходимо соблюдать хотя бы базовые меры безопасности.

 

 

Вопросы: (для контроля знаний)

  1. В чём суть пирометаллургического способа получения металлов? Какие металлы можно получить этим способом? Приведите примеры и уравнения реакций получения.
  2. В чём суть электрометаллургического способа получения металлов? Какие металлы можно получить этим способом? Приведите примеры и уравнения реакций получения.
  3. Каковы этапы получения чугуна и стали?
  4. Какие ещё бывают способы получения металлов? Какие металлы можно получить этими способами? Приведите примеры и уравнения реакций получения.
  5. Каковы экологические проблему металлургического производства и способы их решения?
  6. Что такое сплавы и чем они по свойствам отличаются от чистых металлов? Приведите примеры.
  7. На какие группы можно проклассифицировать сплавы?

Список используемых источников:

  1. О.С. Габриелян и др. Химия. 11 класс. Профильный уровень: учебник для общеобразовательных учреждений; Дрофа, Москва, 2008г.;
  2. «Репетитор по химии» под редакцией А. С. Егорова; «Феникс», Ростов-на-Дону, 2006г;
  3. Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001;
  4. https://sites.google.com/site/himulacom/zvonok-na-urok/11-klass---cetveertyj-god-obucenia/urok-no33-obsie-sposoby-polucenia-metallov
  5. http://olgvo2007.narod.ru/olderfiles/2/A_30_Obschie_sposoby_polucheniya_m-98533.doc
  6. http://festival.1september.ru/articles/416196/
  7. http://promplace.ru/dobycha-i-poluchenie-metallov-staty/sposoby-polucheniya-metallov-1539.htm
  8. http://www.xumuk.ru/encyklopedia/2/4178.html
  9. http://www.syl.ru/article/168591/new_splavyi-metallov-osnovnyie-splavyi-metallov-svoystva-metallov-i-splavov

 


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.042 с.