Любовь, предостережение, обман — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Любовь, предостережение, обман

2022-12-29 22
Любовь, предостережение, обман 0.00 из 5.00 0 оценок
Заказать работу

 

 

Магия химического влечения

 

Если прогуляться по тайге где-нибудь в Северной Америке или по сосновому бору у моря в Италии – или хотя бы просто пройтись по обсаженной деревьями дороге, какие есть во многих частях света, – имея при себе одно особое химическое вещество, известное под коммерческим названием «диспарлур», вокруг вас очень скоро начнут нервно виться бабочки.

Все это будут самцы вида непарный шелкопряд (Lymantria dispar). Эта бабочка – вредитель первого порядка, способный уничтожать целые леса. Химикат, с помощью которого вы сотворили это небольшое чудо, – их специфический половой феромон. Самки шелкопряда синтезируют его в специальных железах, а затем выпускают в окружающую среду. Он представляет собой невероятно могущественный афродизиак: даже если вы просто потрогаете флакон, оставшегося у вас на пальцах количества уже хватит, чтобы обуреваемые жаждой любви самцы устремились к вам со всех сторон, преодолевая иногда очень большие расстояния.

Несколько лет назад, когда я только приступил к исследованию белков обонятельной системы у насекомых, чтобы набрать непарного шелкопряда для экспериментов, мне достаточно было пройтись по заросшему каменным дубом (Quercus ilex) речному берегу, держа в руках банку со следовыми количествами этого вещества.

Самцы сами слетались ко мне со всей округи, немного кружили рядом, потом ныряли в банку и сидели там, часто трепеща крылышками. Прогуливающиеся неподалеку пожилые пары и мамы с колясками изумленно таращились на меня, не в силах поверить своим глазам.

Увы, никакой магии в этом не было. Самцы просто летели на запах самки. Волшебство, собственно, заключается только в том, насколько чувствительны насекомые к запаху своих феромонов. В лесах Южной Германии, недалеко от Мюнхена, располагается Институт поведенческой физиологии имени Макса Планка, знаменитый тем, что в нем долгое время обитали Конрад Лоренц и его гуси, а Карл-Эрнст Кайслинг проводил новаторские исследования феромонов у насекомых [1]. С помощью электрофизиологических методов он фиксировал реакции одной-единственной ольфакторной сенсиллы на антенне насекомого, получавшего обонятельный раздражитель в виде феромона или какого-то другого летучего вещества. Понижая концентрацию вещества до тех пор, пока электрический сигнал вообще не пропадал, он вычислил, что всего десяти молекул специфического феромона (бомбикола) достаточно, чтобы вызвать реакцию в хемосенсилле тутового шелкопряда.

Название вещества происходит от латинского названия мотылька, Bombyx mori, – это был первый идентифицированный наукой феромон насекомого. Его открытие стало крупной вехой в истории сразу и химии, и биологии. Однако дело было не только в идентификации вещества как такового. Впервые в истории наука убедилась, что насекомые (и другие животные) действительно пользуются языком химических сигналов, который строится на обмене молекулами пахучего вещества.

 

Феромоны и запахи

 

На самом деле идею о том, что насекомые способны находить друг друга по запаху, выдвинул еще французский энтомолог Жан-Анри Казимир-Фабр (1823–1915). Но лишь благодаря изобретательности и настойчивости Адольфа Бутенандта в 1959 году удалось выделить несколько миллиграммов первого феромона из полумиллиона самок тутового шелкопряда [2].

В те времена это было поистине великое достижение и труднейшая задача. Сейчас искомое количество можно с легкостью воспроизвести с помощью доступных науке аналитических инструментов. Химическая идентификация нового полового феромона в наши дни осуществляется посредством анализа выделений одной-единственной самки при помощи массовой спектрометрии (после отделения на газохроматографической установке). Самка выделяет очень мало секрета (менее одной миллионной грамма), но это примерно в сто раз больше, чем надо для такого анализа.

В результате такого прогресса инструментальной базы наука смогла выделить половые феромоны у тысяч видов животных. Главным стимулом для исследований стала возможность самим передавать послания на языке химической коммуникации и, например, вырабатывать экощадящие стратегии для контроля популяции сельскохозяйственных вредителей. Представляете, можно избавиться от опасных насекомых, просто сказав, чтобы они ушли, химическими словами! Ну, такова, во всяком случае, была основная идея. На практике, увы, все гораздо сложнее. Даже сейчас, полвека спустя после открытий Бутенандта, мы все еще пользуемся для защиты посевов инсектицидами.

Помимо чисто практической и экономической пользы изучение феромонов у насекомых – очень интересное и благодарное занятие для ученых, ведь разнообразие, точность и сложность химических посланий, которыми обмениваются животные, поистине не знают себе равных, а мы часто просто этого не замечаем. В этой главе мы попробуем бросить хотя бы беглый взгляд на те сокровища знаний, что скрываются в глубинах муравейников или в изощренной архитектуре антенн чешуекрылых, способных улавливать из воздуха даже единичные молекулы феромонов. Куда более полное и понятное изложение этой захватывающей темы вы сможете найти в книге Тристрама Уайатта «Феромоны и поведение животных» [3].

Первым делом наука взялась за изучение половых феромонов; до сих пор мы понимаем их лучше всяких других и знаем о них больше. Но, помимо сообщений на темы привлекательности и размножения, насекомые передают феромонами и другие типы информации: предупреждают об опасности, сообщают о близости еды, соревнуются с другими самцами за самок. Однако подлинных высот комплексности и информативности язык феромонов достиг у общественных насекомых, где химические сигналы помогают распознавать кастовую принадлежность, назначать задачи и узнавать своих.

Феромоны – это летучие (хотя в некоторых случаях – нелетучие) соединения, воспринимаемые обонятельной, или, выражаясь более общо, хемосенсорной, системой. Возникает естественный вопрос: чем же они отличаются от других запахов, присутствующих в окружающей среде? Ученые дали им такое определение: феромонами являются химические вещества, производимые особями данного вида и воздействующие на других особей того же вида. Все другие вещества, включая и феромоны представителей других видов, воспринимаются просто как запахи. Иными словами, вещество, которое производит самка бабочки, служит феромоном для самцов ее вида и вызывает у них сильные и четкие поведенческие реакции; при этом то же самое вещество для насекомых других видов является просто запахом, который прекрасно может, скажем, сообщать им о присутствии рядом этой самой самки бабочки. Нетрудно понять, почему такие химические послания важны для паразитов и хищников, которые постоянно скрытно наблюдают окружающее пространство на предмет добычи или жертвы.

Итак, в этой главе мы попробуем познакомиться со сложным и интересным языком, на котором общаются друг с другом насекомые.

 

Немного химии

 

 

Разнообразные структуры феромонов у насекомых

 

Давайте подойдем к феромонам так же, как к запахам в предыдущих главах, и рассмотрим их прежде всего с точки зрения химической структуры. По простым примерам на рисунках 14 и 15 ясно, что в этих молекулах нет ничего принципиально нового. Напротив, они во всем напоминают натуральные химические вещества или самые обычные продукты метаболизма. Вместо того чтобы выдумывать новые специализированные инструменты для создания феромонов, насекомые синтезируют эти важнейшие вещества при помощи ферментов, уже задействованных в основных метаболических механизмах, просто прибавляя в самом конце особую модификацию, из-за которой молекула становится менее обычной или даже в своем роде уникальной.

 

Рисунок 14. Половые феромоны мотыльков. Большинство представляют собой линейные цепочки из 12–20 атомов углерода и функциональной группой на одном конце. Интересное исключение – диспарлур, существующий в двух зеркальных формах (энантиомерах), одна из которых является аттракантом для самцов непарного шелкопряда (Lymantria dispar), а вторая – репеллентом. Два изомера гексадекадиеналя составляют коктейль полового феромона для родственных видов Helicoverpa armigera и Helicoverpa assulta, но в противоположной пропорции – где-то 95:5.

 

Очень наглядный пример – половые феромоны чешуекрылых (мотыльков и бабочек), от лица которых будет выступать молекула бомбикола. За очень немногими исключениями они состоят из цепочек в 12–20 атомов углерода, часто с одной или двумя двойными связями и функциональной группой на конце – спиртовой, альдегидной или ацетатной.

 

Рисунок 15. Половые феромоны насекомых включают множество разных химических структур. Особенно интересен случай двух жуков-скарабеев, которые оба используют японилур – лактон с фруктовым запахом, существующий в природе в двух идентичных, но зеркальных формах-энантиомерах. «Японский жук», Popilia japonica, пользуется R-изомером как аттракантом и его энантиомером как репеллентом, а «осакский жук», Anomala osakana, поступает ровно наоборот.

 

Эти молекулы очень похожи на обычные жирные кислоты, которые есть и у растений, и у животных и отличаются только типом функциональной группы или позицией и конфигурацией двойной связи. Играя с такими малыми структурными элементами в разных сочетаниях, можно получить большое количество разных веществ, достаточно отличающихся друг от друга, чтобы обонятельная система насекомого распознавала каждое из них по отдельности.

Тот же самый тип скелета вполне узнаваем в молекуле диспарлура, полового феромона непарного шелкопряда, несмотря на ее странный облик. На самом деле необычное трехчленное кольцо (эпоксид, окись двухатомного радикала) в середине молекулы получить довольно просто: надо окислить двойную связь. В других случаях предшественника (линейную жирную кислоту) опознать бывает сложнее, как, например, у γ-лактона (рис. 15). Мы уже встречали похожие циклические соединения с запахом жареного мяса (лактоны с короткой цепочкой) или фруктов (производные с длинной цепочкой). Это просто эфиры, которые образуются, когда кислотная группа встречается с алкогольной гидроксильной. У лактонов обе группы принадлежат одной молекуле, и в итоге получается циклическая структура. Достаточно разомкнуть кольцо, чтобы восстановить кислоту и алкогольные группы: тогда сразу станет видно, что молекула отличается от обычной жирной кислоты только наличием гидроксильной группы.

Другой феромон с рисунка 15, очевидно, производная аминокислоты, а конкретно – метилэфир лейцина, одной из 20 аминокислот, служащих строительным материалом для белков. Два оставшихся примера просто иллюстрируют разнообразие структур, встречающихся в словаре химического языка, на котором насекомые общаются внутри каждого отдельного вида. Уникальность посланий и их точная расшифровка системой-переводчиком обеспечивают надежное распознавание партнера для спаривания и помогают избежать бесплодных межвидовых союзов.

 

Феромоны подчас представляют собой довольно сложный коктейль

 

В целях увеличения понятности и точности сообщений половые феромоны обычно состоят из целого коктейля химических веществ: обычно двух-трех основных ингредиентов и целой компании остальных в следовых количествах. Эти сложные букеты больше похожи на целые предложения, чем на отдельные слова, – и они действительно в чем-то сродни китайским идеограммам. В классическом китайском бытовало правило, что всякое понятие должно быть выражено одним иероглифом; сегодня слова часто состоят из двух и даже трех иероглифов с взаимодополняющими или близкими значениями, чтобы конкретизировать смысл и избежать путаницы в разговорной речи, где одно звучание нередко соответствует совершенно разным понятиям.

Два ночных мотылька, Helicoverpa armigera (совка хлопковая) и Helicoverpa assulta (совка табачная), пользуются для своего феромонового коктейля одинаковыми соединениями, но в разных пропорциях (рис. 14). Оба компонента – линейные альдегиды по 16 атомов углерода, каждый – с одной двойной связью, но в первом случае – на девятой позиции, а во втором – на одиннадцатой. Те и другие бабочки пользуются смесью альдегидов в приблизительной пропорции 95:5, но в обратном соотношении. Сам факт распознавания столь малых различий в молекулярной структуре говорит о высокой чувствительности системы.

 

Поразительное сходство и тонкие различия

 

В других случаях различия могут оказаться даже еще тоньше, а система – еще чувствительнее. Бывает, что она способна различить молекулы, идентичные во всех отношениях… кроме зеркальной структуры. Этот феномен носит название «хиральность» (от греческого слова, обозначающего руку); он описывает молекулы, одинаковые по функциональным группам и по расположению атомов, но представляющие собой зеркальные отражения друг друга – как две руки. Молекулы, способные существовать вот в таких двух формах, называются хиральными соединениями. Предсказать, имеет ли молекула подобное свойство, можно, проверив ее симметричность. Симметричная молекула уникальна и, как любой симметричный предмет, полностью совпадает со своим зеркальным отражением.

Асимметричные молекулы в биологии – весьма распространенное явление, от аминокислот до сахаров; в большинстве случаев в природе существует только одна форма. Все аминокислоты, из которых строятся белки нашего организма, обладают одинаковой хиральностью. Все они разные, но общая структурная часть у них всегда ориентирована одним стандартным образом. Никаких зеркальных отражений организм сам не синтезирует. Сказанное верно и относительно сахаров, которые можно найти буквально где угодно, от самых простых молекул фруктов (глюкоза, фруктоза, сахароза) до длинных цепочек крахмала, целлюлозы и прочих полисахаридов.

Однако бывает и так, что в природе встречаются два зеркальных варианта одной молекулы. Такие соединения именуются энантиомерами и отличаются друг от друга наличием буквы (L – для левой ориентации; D – для правой) или знака (+ или —) перед названием. Такая нотация указывает на единственное физическое свойство, отличающее два энантиомера один от другого: способность поворачивать плоскость поляризации светового луча вправо или влево[5].

Когда в природе есть оба энантиомера какого-либо соединения, они обычно не происходят из одного источника. Иначе говоря, их синтез стереоспецифичен: данная ткань или организм способны производить только один изомер. Хороший пример – карвон, обладающий мятным запахом. В L-форме он содержится в листьях перечной мяты и отвечает за характерный запах этого растения.

D-форма содержится в семенах тмина и является важным компонентом его аромата. Это, наверное, лучший пример энантиомеров, которые для человека пахнут по-разному, но все-таки довольно похоже. Мы на самом деле не слишком хорошо различаем такие тонкие обонятельные нюансы и обычно воспринимаем оба энантиомера распространенных одорантов как совсем одинаковые или хотя бы сходные.

Зато у насекомых все по-другому. Их обонятельные органы без труда отличают феромон от его зеркального двойника – а все потому, что рецепторы настроены очень узко. Именно такими талантами может похвастаться непарный шелкопряд, с которым мы уже познакомились в начале этой главы. Едва успев открыть диспарлур, химики тут же придумали способ синтезировать это соединение в поистине промышленных количествах для нужд сельского хозяйства. Диспарлур может существовать в двух зеркальных формах, но мотылек производит себе в качестве феромона только одну. Первым делом ученые решили синтезировать рацемат, смесь обоих изомеров в пропорции 1:1 – куда более простую и дешевую в изготовлении. Ожидали, что продукт покажет пятидесятипроцентную эффективность, так как только один из двух энантиомеров представляет собой активное соединение. Как же они удивились, обнаружив, что из рацемата вышел очень плохой аттрактант, практически бесполезный для сохранения урожая. Штука была в том, что «неправильный» изомер оказался ингибитором и в значительной мере подавлял действие «правильного». Весьма вероятно, что именно этот механизм позволяет насекомым отличать сигнал присутствующей рядом самки своего вида от самок других видов, родственных, но к размножению непригодных.

Еще более наглядный пример любезно согласились предоставить два вида японских скарабеев – Popilia japonica и Anomala osakana. Оба пользуются одним и тем же феромоном, γ-лактоном на 14 атомов углерода, который называется японилур (см. рис. 15). Его запах мы с вами назвали бы фруктовым. Это вещество существует в двух зеркальных формах, и оба жука пользуются для своих целей и той и другой. Это совершенно не мешает им отличать сигнал самок своего вида от сигнала самок другого, потому что один энантиомер работает у них аттрактантом, а другой – репеллентом, только вот у двух видов эта раскладка меняется местами. Кстати, все известные науке половые феромоны можно найти в бесплатной базе данных [4].

Существуют феромоны-антиафродизиаки. Очень часто самец после спаривания оставляет на самке отпугивающий запах, который лишает других самцов всякого желания к ней приближаться. Очень интересно в этом отношении ведет себя микроскопическая оса Ooencryptus kuvanae – паразит непарного шелкопряда, которая откладывает яйца в яйца этого мотылька. Срок ее жизни крайне невелик, и потому самцы стараются как можно эффективнее использовать отпущенное им природой время: они спариваются с максимальным количеством самок. Однако, пока ты спариваешься с одной, остальных могут разобрать – так почему бы не забронировать себе побольше подруг для будущего секса? Взрослые особи кругом так и роятся, конкуренция очень велика; кавалеры отчаянно торопятся добраться до дам. В этих непростых условиях самцы разработали весьма любопытную стратегию: вместо того чтобы торопливо спариваться с самками по одной, они помечают сразу целый женский коллектив своим феромоном. Осаленная самка принимает только того самца, который оставил на ней свою подпись, а остальных избегает. Иными словами, каждый самец быстренько организует себе свой, и только свой, гарем, к которому сможет вернуться позднее, чтобы в спокойной обстановке докончить начатое. Природа феромона до сих пор не изучена, но, наблюдая за поведением вида, ученые пришли к выводу, что самец антеннами наносит его на антенны самки. Обычно антенны выступают в качестве органов чувств, которые принимают химические сигналы, а не отправляют их, но не всегда. Феромоновые железы были найдены на усиках пчел-отшельников, да и муравьи давно и успешно обмениваются информацией, касаясь усиками друг друга.

 


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.032 с.